• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GAO Bo, WANG Shuai-shuai, SHEN Yu-sheng, FAN Kai-xiang. Dynamic stress concentration and damping mechanism of twin cylindrical composite-lined tunnels subjected to vertical incident plane SV waves[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 321-328. DOI: 10.11779/CJGE201802013
Citation: GAO Bo, WANG Shuai-shuai, SHEN Yu-sheng, FAN Kai-xiang. Dynamic stress concentration and damping mechanism of twin cylindrical composite-lined tunnels subjected to vertical incident plane SV waves[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 321-328. DOI: 10.11779/CJGE201802013

Dynamic stress concentration and damping mechanism of twin cylindrical composite-lined tunnels subjected to vertical incident plane SV waves

More Information
  • Received Date: March 20, 2016
  • Published Date: February 24, 2018
  • A series of solutions are presented for the dynamic stress concentration factor of the underground twin cylindrical tunnels with composite liners and buffer layers in a half elastic space subjected to vertically incident plane SV waves based on the Fourier-Bessel expansion method, and the mechanical model for the tunnels with small clear distance with soft layer is established. The influences of the factors such as the distance between the tunnels and the damping layer are investigated. It is shown that the distance between the tunnels plays an important role in the dynamic stress concentration factor of the composite-linned tunnels, and the dynamic stress of the liners decreases when the distance of the tunnels increases. The interaction of the two tunnels must be considered when the distance between the centers of the cavities is less than 4 times the diameter of the chamber. The dynamic stress concentration factor of the surrounding rock in the middle part between the tunnels is larger than that at the other parts. With the low shear modulus of the damping layer, the normal force between the wall rock and the liner is weakened, then the dynamic stress of the liners decreases by 20% with the buffer layers set between the surrounding rock and the liner, while the tangential dynamic stress of the surrounding rock increases.
  • [1]
    PAO Y H, MAO C C.The diffraction of elastic waves and dynamic stress concentrations[M]. New York: Crane, Russak & CompanyInc, 1972.
    [2]
    DAVIS C A, LEE V W, BARDET J.Transverse responseof underground cavities and pipes to incident SV waves[J]. Earthquake Engineering and Structural Dynamics, 2001, 30(3): 383-410.
    [3]
    LEE V W, T RIFUNAC M D. Response of tunnels to incident SH waves[J]. Journal of Engineering Mechanics, ASCE, 1979, 105: 643-659.
    [4]
    LE E V W, KARL J. Diffraction of SV waves by underground, circular, cylindrical cavities[J]. Soil Dynamics and Earthquake Engineering, 1992, 11: 445-456.
    [5]
    纪晓东, 梁建文, 杨建江. 地下圆形衬砌洞室在平面P波和SV 波入射下动应力集中问题的级数解[J].天津大学学报, 2006, 39(5): 511-517.
    (JI Xiao-dong, LIANG Jian-wen, YANG Jian-jiang.Ondynamic stress concentration of an underground cylindricallined cavity subjected to incident plane P and SV waves[J]. Journal of Tianjin University, 2006, 39(5): 511-517. (in Chinese))
    [6]
    THAMBIRAJAH B, THAMBIRATNAM D P, CHAN G K, et al.Dynamic response of twin circular tunnels due to incident SH-wave[J]. Earthquake Eng Struct Dyn, 1984, 12: 181-201
    [7]
    梁建文, 张浩, LEE V W.平面P波入射下地下洞室群动应力集中问题解析解[J]. 岩土工程学报, 2004, 26(6): 815-819.
    (LIANG Jian-wen, ZHANG Hao, LEE V W.An analytical solution for dynamic stress concentration of underground cavities under incident plane P waves[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 815-819. (in Chinese))
    [8]
    梁建文, 张浩, LEE V W.地下双洞室在SV波入射下动力响应问题解析解[J]. 振动工程学报, 2004, 17(2): 132-140.
    (LIANG Jian-wen, ZHANG Hao, LEE V W.An analytical solution for dynamic stress concentration of underground twin cavities due to incident SV waves[J]. Journal of Vibration Engineering, 2004, 17(2): 132-1401. (in Chinese))
    [9]
    李宁. 半空间中圆形衬砌洞室群对平面P波和SV波的散射[D]. 天津: 天津大学, 2006.
    (LI Ning.Scattering an diffraction of cylindrical lined cavities in half-space subjected to P & SV waves[D]. Tianjin: Tianjin University, 2006. (in Chinese))
    [10]
    王明年, 关宝树. 高烈度地震区地下结构减震原理研究[J].工程力学, 2000, 3(A03): 295-299.
    (WANG Ming-nian, GUAN Bao-shu.Study of the mechanism of shock absorption layer of underground structure in highly seismic zone[J]. Engineering Mechanics, 2000, 3(A03): 295-299. (in Chinese))
    [11]
    钟启凯. 地下圆形组合衬砌洞室在地震波下的动力反应分析[D]. 长沙: 湖南大学, 2009.
    (ZHONG Qi-kai.Dynamic response analysis of underground cylindrical composite- lining cavern subjected to seismic waves[D]. Changsha: Hunan University, 2009. (in Chinese))
    [12]
    王帅帅, 高波, 申玉生, 等. 平面SH 波入射下深埋软岩隧道抗减震机理研究[J]. 土木工程学报, 2014, 47(增刊1): 280-286.
    (WANG Shuai-shuai, GAO Bo, SHEN Yu-sheng, et al.Study on the mechanism of resistance and damping technology of deep soft rock tunnels subjectedto incident plane SH waves[J]. China Civil Engineering Journal, 2014, 47(S1): 280-286. (in Chinese))
    [13]
    王帅帅, 高波, 隋传毅, 等. 减震层减震原理及跨断层隧道减震技术振动台试验研究[J]. 岩土工程学报, 2015, 37(6): 1086-1092.
    (WANG Shuai-shuai, GAO BO, SUI Chuan-yi, et al.Mechanism of shock absorption layer and shaking table tests on shaking absorption technology of tunnel across fault[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1086-1092. (in Chinese))
    [14]
    王帅帅, 高波. 隧道设置减震层减震机制研究[J]. 岩石力学与工程学报, 2016, 35(3): 592-603.
    (WANG Shuai-shuai, GAO BO.Damping mechanism and shaking table test on mountaintunnel liners with buffer layers[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 592-603. (in Chinese))
    [15]
    皇民. 浅埋双洞隧道地震动力响应研究[D]. 成都: 西南交通大学, 2009.
    (HUANG Min.Study on seismic dynamic response of shallow double-hole tunnels[D]. Chengdu: Southwest Jiaotong University, 2009. (in Chinese))
  • Cited by

    Periodical cited type(7)

    1. 向成兵. 基于数值模拟的碾压混凝土重力坝坝体开裂原因研究. 水利科技与经济. 2025(01): 64-70 .
    2. 张春顺,林正鸿,杨典森,陈嘉瑞. 考虑初始级配影响的粗粒土非线性弹性模型研究. 岩土力学. 2025(03): 750-760 .
    3. 蔡新合,陈子玉,李国英. 考虑颗粒破碎能耗的堆石料剪胀方程及其应用. 水利水运工程学报. 2024(03): 127-135 .
    4. 庞元恩,石国栋,段煜,姚敏,吉浩泽,罗鸣,李茂彪,李旭. 基于搜索分析深度学习网络(SaNet)的粗粒土级配识别. 岩土工程学报. 2024(09): 1984-1993 . 本站查看
    5. 卢斌,郑雪玉,吴修锋,谢兴华,李艳伟,王照英. 特高堆石坝砾石土心墙非均质缺陷对渗流场影响分析. 水电与抽水蓄能. 2023(03): 22-25+39 .
    6. 熊治茗,杜俊,杨志全,沈兴刚. 筑坝堆石料三轴剪切特性及变形破坏试验研究. 水利与建筑工程学报. 2023(06): 107-113 .
    7. 王明昌. 高砾石土心墙堆石坝过渡料爆破直采技术分析. 新型工业化. 2022(11): 132-135 .

    Other cited types(4)

Catalog

    Article views (366) PDF downloads (200) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return