• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Yao-hui, CHEN Yu-min, LIU Han-long, LI Wen-wen, JIANG Qiang. Shaking table tests on liquefaction resistance performance of single rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 287-295. DOI: 10.11779/CJGE201802009
Citation: YANG Yao-hui, CHEN Yu-min, LIU Han-long, LI Wen-wen, JIANG Qiang. Shaking table tests on liquefaction resistance performance of single rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 287-295. DOI: 10.11779/CJGE201802009

Shaking table tests on liquefaction resistance performance of single rigid-drainage pile

More Information
  • Received Date: November 22, 2016
  • Published Date: February 24, 2018
  • The rigid-drainage pile is a new type of pile which combines vertical drainage and rigid pile. To investigate the liquefaction resistance, the drainage, response of excess pore water pressure, acceleration and lateral permanent displacement of pile head under upper loads are measured based on shaking table tests. The results are compared with those of ordinary pile tests. It is indicated that the rigid-drainage pile is an effective approach for mitigation of liquefaction. The phenomenon of sand boil is restrained effectively in the range of one time the pile diameter, while sand boil occurs significantly in ordinary pile tests. The peak of excess pore water pressure ratio of rigid-drainage pile tests is 50% of that of ordinary pile ones at a distance of 0.5 time the pile diameter, and the rigid-drainage pile can dissipate the excess pore water pressure more rapidly. It takes 6 s for the peak of excess pore water pressure ratios to decrease to 0.7 in the rigid-drainage pile tests, and in the ordinary pile tests it is 17 s. The peak of acceleration is 0.2g at a distance of 0.5 time the pile diameter, and it is only 0.09g in the ordinary pile tests at the same monitor point, which means that the peak of acceleration in ordinary pile tests is decreased by 100% approximately compared to that of rigid-drainage pile. With the continuation of loading process, the amplitude vibration of rigid-drainage pile head is tiny, and it only occurs in the initial moments (3 s). The peak lateral permanent displacement is 0.6 cm in the ordinary pile tests and the amplitude vibration continues to the end of shaking. The peak lateral permanent displacement is around
  • [1]
    殷宗泽. 土工原理[M]. 北京: 中国水利水电出版社, 2007.
    (YIN Zeng-ze.The mechanism of geotechnic enginnering[M]. Beijing: China Water and Power Press, 2007. (in Chinese))
    [2]
    HAMADA M.Engineering for earthquake disaster mitigation[M]. Berlin: Springer, 2014.
    [3]
    MIWA S, IKEDA T, SATO T.Damage process of pile foundation in liquefied ground during strong ground motion[J]. Soil Dynamics and Earthquake Engineering, 2006, 26: 325-336.
    [4]
    TOWHATA I.Geotechnical earthquake engineering[M]. Berlin: Springer, 2008.
    [5]
    郑刚, 龚晓楠, 谢永利, 等. 地基处理技术发展综述[J].土木工程学报, 2012, 45(2): 127-146.
    (ZHENG Gang, GONG Xiao-nan, XIE Yong-li, et al.State-of-the-art techniques for ground improvement in China[J]. China Civil Engineering Journal, 2012, 45(2): 127-146. (in Chinese))
    [6]
    SADREKARIMI A, GHALANDARZADEH A.Evaluation of gravel drains and compacted sand piles in mitigating liquefaction[J]. Ground Improvement, 2005, 9(3): 91-104.
    [7]
    SASAKI Y, TANIGUCHI E.Shaking table tests on gravel drains to prevent liquefaction of sand deposits[J]. Soils and Foundations, 1982, 22(3): 1-14.
    [8]
    MELOROSE J, PERROY R, CAREAS S.Stabilization of potentially liquefiable sand deposits using gravel drains[J]. ASCE, Journal of Geotechnical Engineering Division, 1977, 103(7): 757-768.
    [9]
    刘汉龙. 一种抗液化排水刚性桩: 中国, CN2873886Y[P].2007-02-28. (LIU Han-long. A kind of rigid drainage pile of mitigation of liquefaction: China, CN2873886Y[P]. 2007-02-28.(in Chinese))
    [10]
    LIU H, CHEN Y M, ZHAO N.Development technology of rigidity-drain pile and numerical analysis of its anti- liquefaction characteristics[J]. Journal of Central South University of Technology, 2008, 15(S2): 101-107.
    [11]
    赵楠. 刚性排水桩的抗液化性状试验与分析[D]. 南京:河海大学, 2008.
    (ZHAO Nan.Test and analysis on anti-liquefaction behaviors of rigidity-drain pile[D]. Nanjing: Hohai University, 2008. (in Chinese))
    [12]
    刘汉龙, 陈育民, 赵楠. 刚性排水桩的技术开发与抗液化特性试验研究[C]// 第一届全国工程安全与防护学术会议. 南京, 2008: 531-535.
    (LIU Han-long, CHEN Yu-min, ZHAO Nan.Development technology of rigidity-drain pile and laboratory test of its anti-liquefaction characteristics[C]// 1st National Conference of Engineering and Safety Protection. Nanjing, 2008: 531-535. (in Chinese))
    [13]
    陈育民, 刘汉龙, 赵楠.抗液化刚性排水桩振动台试验的数值模拟研究[J]. 土木工程学报, 2010, 43(12): 114-119.
    (CHEN Yu-min, LIU Han-long, ZHAO Nan.Laboratory test on anti-liquefaction characteristics of rigidity-drain pile[J]. China Civil Engineering Journal, 2010, 43(12): 114-119. (in Chinese))
    [14]
    王翔鹰, 刘汉龙, 江强, 等. 抗液化排水刚性桩沉桩过程中的孔压响应[J]. 岩土工程学报, 2017, 39(4): 645-651.
    (WANG Xiang-ying, LIU Han-long, JIANG Qiang, et al.Field tests on the response of excess pore water pressures of the liquefaction resistance rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 645-651. (in Chinese))
    [15]
    OTSUSHI K, KATO T, HARA T, et al.Analytical study on mitigation of liquefaction-related damage to flume channel using sheet-pile with drain[C]// GeoFlorida 2010: Advances in Analysis, Modeling & Design. Florida, 2010: 3062-3071.
    [16]
    MARINUCCI A.Effect of prefabricated vertical drains on pore pressure generation in liquefiable sand[D]. Austin: The University of Texas at Austria, 2010.
    [17]
    TANAKA H, KITA H, IIDA T.Countermeasure using steel sheet pile with drain capability[C]// Eleventh World Conference on Earthquake Engineering. Mexico City, 1996: 1052-1059.
    [18]
    RASOULI R, TOWHATA I, AKIMA T.Experimental evaluation of drainage pipes as a mitigation against liquefaction·induced settlement of structures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013: 1-10.
    [19]
    吴永娟, 牛琪瑛, 闫卫泽. 短桩加固液化砂土时孔压比随桩距变化规律分析[J]. 太原理工大学学报, 2008, 39(6): 613-615.
    (WU Yong-juan, NIU Qi-ying, YAN Wei-ze.Analysis of the change of pore pressure ratio with the pile spacing in the liquefiable sand soil strengthened by short pile[J]. Journal of Taiyuan University of Technology, 2008, 39(6): 613-615. (in Chinese))
    [20]
    OKUR V, UMUT S.Energy approach to unsaturated cyclic strength of sand[J]. Bull Earthquake Enginerring, 2013(11): 503-519.
    [21]
    YANG J, SAVIDIS S, ROEMER M.Evaluating liquefaction strength of partially saturated sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(9): 975-979.
    [22]
    SHI T, CHENG S.Dynamic similitude law design of shaking table model test for high-rise steel structures[C]// 5th International Conference on Advances in Experimental Structural Engineering. 2013: 5-9.
    [23]
    SUSUMU I.Similitude for shaking table test on soil-structure-fluid model 1g gravitational field[R]. Yokosuka: The Port and Harbour Reasearch Institute, Ministry of Transport, 1988.
    [24]
    詹永祥, 蒋关鲁, 牛国辉, 等. 桩板结构路基动力模型试验研究[J]. 岩土力学, 2008, 29(8): 2097-2102.
    (ZHAN Yong-xiang, JIANG Guan-lu, NIU Guo-hui, et al.Model experimental research on dynamic performance of pile-plank embankment[J]. Rock and Soil Mechanics, 2008, 29(8): 2097-2102. (in Chinese))
    [25]
    凌贤长, 王臣, 王成. 液化场地桩-土-桥梁结构动力相互作用振动台试验模型相似设计方法[J]. 岩石力学与工程学报, 2004, 23(3): 450-456.
    (LING Xian-zhang, WANG Chen, WANG Zhi-qiang, et al.Study on large-scale shaking table proportional model test for free-ground liquefaction arisen from earthquake[J]. Earthquake Enginerring and Enginerring Vibration, 2003, 23(6):138-143.(in Chinese))
    [26]
    宋二祥, 武思宇, 王宗纲. 地基-结构系统振动台模型试验中相似比的实现问题探讨[J]. 土木工程学报, 2008, 41(10): 87-92.
    (SONG Er-xiang, WU Si-yu, WANG Zong-gang.A tentative solution for similitude realization in shaking table test of SSI systems[J]. China Civil Enginerring Journal, 2008, 41(10): 87-92. (in Chinese))
    [27]
    ZEGHAI M, ELGAMAL A W, TANG H T, et al.Lotung downhole array Ⅱ: evaluation of soil nonlinear properties[J]. Journal of Geotechnical Engineering, 1995, 121(4): 363-378.
    [28]
    王永志, WILSON D W, KHOSRAVI M, 等. 动力离心模型试验循环剪应力-剪应变反演方法对比[J]. 岩土工程学报, 2016, 38(2): 271-277.
    (WANG Yong-hi, WILSON D W, KHOSRAVI M, et al.Evaluation of cyclic shear stress-strain using inverse analysis techniques in dynamic centrifuge tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 271-277. (in Chinese))
    [29]
    周燕国, 梁甜, 李永刚, 等. 含黏粒砂土场地液化离心机振动台试验研究[J]. 岩土工程学报, 2013, 35(9): 1650-1658.
    (ZHOU Yan-guo, LIANG Tian, LI Yong-gang, et al.Dynamic centrifuge tests on liquefaction of clayey sand ground[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1650-1658. (in Chinese))
  • Cited by

    Periodical cited type(3)

    1. 徐庆功. 原位测试在岩土工程勘察中的应用研究. 黑龙江水利科技. 2024(03): 88-91 .
    2. 谷忠德,郭兴森,赵维,王兴,刘晓磊,郑敬宾,刘敬喜,贾永刚,年廷凯. 深海浅表层沉积物不排水剪切强度的多探头原位测试系统及评价方法研究. 工程地质学报. 2021(06): 1949-1955 .
    3. 张鹏,马德青,邬远明. 洞庭湖软土特性原位测试对比分析. 土工基础. 2020(03): 376-379 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return