• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DUAN Wei, CAI Guo-jun, LIU Song-yu, ZHU Liu-wen, DU Yu. Evaluation method for sand liquefaction of Hong Kong-Zhuhai-Macao Bridge based on CPTU tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 236-239. DOI: 10.11779/CJGE2017S2057
Citation: DUAN Wei, CAI Guo-jun, LIU Song-yu, ZHU Liu-wen, DU Yu. Evaluation method for sand liquefaction of Hong Kong-Zhuhai-Macao Bridge based on CPTU tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 236-239. DOI: 10.11779/CJGE2017S2057

Evaluation method for sand liquefaction of Hong Kong-Zhuhai-Macao Bridge based on CPTU tests

More Information
  • Received Date: August 01, 2017
  • Published Date: December 19, 2017
  • The earthquake liquefaction is one of the direct causes for unstable ground and damage of upper structure. Therefore, the liquefaction assessment is an important part of anti-seismic investigation in engineering. By taking the island and tunnel project of Hong Kong-Zhuhai-Macao Bridge as an example, the CPTU data is compared with the results of standard penetration tests and shear wave velocity tests. On one hand, the correlations between CPTU data and SPT, shear wave velocity are established. On the other hand, the sand liquefaction potential of the island tunnel is evaluated by the method of CPTU and compared with the liquefaction results of SPT and shear wave velocity. The results show that the liquefaction method of CPTU has certain advantages and may provide reference basis for similar engineering survey.
  • [1]
    邹海峰, 刘松玉, 蔡国军, 等. 基于电阻率CPTU的饱和砂土液化势评价研究[J]. 岩土工程学报, 2013, 35(7): 1280-1288. (ZOU Hai-feng, LIU Song-yu, CAI Guo-jun,et al. Evaluation of liquefaction potential of saturated sands based on piezocome penetration tests on resistivity[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1280-1288. (in Chinese))
    [2]
    SEED H B, IDRISS I M. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1971, 97(9): 1249-1273.
    [3]
    YOUD T L, IDRISS I M, ANDRUS R D, et al. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817-833.
    [4]
    ROBERTSON P K, WRIDE C E. Evaluating cyclic liquefaction potential using cone penetration test[J]. Canadian Geotechnical Journal, 1998, 35(3): 442-459.
    [5]
    OLSEN R. Liquefaction analysis using the cone penetrometer test (CPT)[C]// Eight World Conference on Earthquake Engineering, 1984.
    [6]
    ROBERTSON P K, CAMPANELLA R G, WIGHTMAN A. SPT-CPT correlations[J]. ASCE J of Geotechnical Engineering, 1983, 109(11): 1449-59.
    [7]
    JEFFERIES M G, DAVIES M P. Estimation of SPT N values from the CPT[M]. ASTM. 1993.
    [8]
    BALDI G, BELLOTTI R, GHIONNA V N, et al. Modulus of sands from CPTs and DMTs[C]// Proc. 12th ICSMFE, 1989: 165-170.
    [9]
    MAYNE P W, RIX G J. Correlations between shear wave velocity and cone tip resistance in natural clays[J]. Soils and Foundations, 1995, 35(2): 107-110.
    [10]
    HEGAZY Y A, MAYNE P W. Statistical correlations between Vs and cone penetration data for different soil types[C]// Proceedings of the International Symposium on Cone Penetration Testing, CPT. 1995: 173-178.
    [11]
    MAYNE P W. The Second James K. Mitchell Lecture: undisturbed sand strength from seismic cone tests[J]. Geomechanics & Geoengineering, 2006, 1(4): 239-257.
    [12]
    ROBERTSON P K. Evaluation of flow liquefaction and liquefied strength using the cone penetration test[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 136(6): 842-853.
    [13]
    GB50011—2010建筑抗震设计规范[S]. 2010. (GB50011—2010 Guidelines for seismic design of buildings[S]. 2010. (in Chinese))
    [14]
    JTG/T B02—01—2008 公路桥梁抗震设计细则[S]. 2008. (JTG/T B02—01—2008 Guidelines for seismic design of highway bridges[S]. 2008. (in Chinese))
    [15]
    廖先斌, 郭晓勇, 杜 宇. 英标和国标标贯设备试验结果相关性分析[J]. 岩土力学, 2013, 34(1):182-185. (LIAO Xian-bin, GUO Xiao-yong, DU Yu. Correlation analysis of standard penetration test results on British and Chinese standard equipments[J]. Rock and Soil Mechanics, 2013, 34(1): 182-185. (in Chinese))
  • Cited by

    Periodical cited type(16)

    1. 孙冠华,王娇,于显杨,易琪,朱开源,王章星,耿璇,屈杰. 压缩空气储能电站地下内衬硐库基本原理与分析方法研究进展. 岩土力学. 2025(01): 1-25 .
    2. 傅丹,伍鹤皋,李鹏,张米高杨. 压气储能地下洞室密封钢衬-围岩之间循环接触传力行为的数值模拟. 太阳能学报. 2025(03): 25-33 .
    3. 蒋中明,甘露,张登祥,肖喆臻,廖峻慧. 压气储能地下储气库衬砌裂缝分布特征及演化规律研究. 岩土工程学报. 2024(01): 110-119 . 本站查看
    4. 阮泉泉,张文,张彬,王其宽,王汉勋,时广升. 不同洞距下内衬式高压储气库热-力特性分析. 隧道与地下工程灾害防治. 2024(01): 73-83 .
    5. 刘钦节,陈强,付强,吴犇牛,杨卿干. 过断层压气储能巷道围岩变形特征与支护优化. 安徽理工大学学报(自然科学版). 2024(02): 67-74 .
    6. 杨雪雯,任灏,廖泽球,王金玺,贾斌. 压缩空气储能地下人工洞室研究现状与展望. 南方能源建设. 2024(04): 54-64 .
    7. 贾宁,刘顺,王洪播. 压缩空气储能人工硐库热力耦合解析方法研究. 岩土力学. 2024(08): 2263-2278+2289 .
    8. 周小松,闫磊,黄康康,孙高博,刘卫. 圆形截面隧道式储气库群布局参数研究. 地下空间与工程学报. 2024(S1): 205-212 .
    9. 张国华,相月,王薪锦,熊峰,唐志成,华东杰. 压气储能地下内衬储气库结构荷载分担解析解及影响因素分析. 岩石力学与工程学报. 2024(S2): 3633-3650 .
    10. 蒋中明,刘宇婷,陆希,杨雪,廖峻慧,刘琛智,黄湘宜,周婉芬,石兆丰,田湘. 压气储能内衬硐室储气关键问题与设计要点评述. 岩土力学. 2024(12): 3491-3509 .
    11. 张国华,王薪锦,相月,潘佳,熊峰,华东杰,唐志成. 压缩空气硬岩储库关键问题研究进展:气密性能、热力过程与稳定性. 岩石力学与工程学报. 2024(11): 2601-2626 .
    12. 张国华,王薪锦,柯洪,相月,郭辉,熊峰,华东杰. 压气储能地下内衬储气库运行压力区间确定方法. 岩石力学与工程学报. 2024(12): 2874-2891 .
    13. 邓申缘,姜清辉,位伟. 基于循环硬化模型的压气硐库围岩力学及变形分析. 岩石力学与工程学报. 2024(12): 2980-2991 .
    14. 蔚立元,弭宪震,胡波文,李树忱,刘日成,叶继红. 内衬式岩洞储氢三维热-流-固耦合模型及洞群运营稳定性分析. 中国矿业大学学报. 2024(06): 1099-1116 .
    15. 杨雪雯. 压气储能电站地下人工洞室上覆岩体抗抬稳定影响因素分析. 内蒙古电力技术. 2024(06): 8-13 .
    16. 周小松,闫磊,黄康康,王颖蛟,申律. 圆形截面隧道式地下储气库容量研究. 科技创新与应用. 2023(30): 72-75 .

    Other cited types(9)

Catalog

    Article views PDF downloads Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return