• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZENG Chao-feng, XUE Xiu-li, MEI Guo-xiong. A review of recent advances in permeable pipe pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 228-231. DOI: 10.11779/CJGE2017S2055
Citation: ZENG Chao-feng, XUE Xiu-li, MEI Guo-xiong. A review of recent advances in permeable pipe pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 228-231. DOI: 10.11779/CJGE2017S2055

A review of recent advances in permeable pipe pile

More Information
  • Received Date: October 09, 2017
  • Published Date: December 19, 2017
  • Soil compaction in the process of pile driving has always plagued engineers. How to speed up the dissipation of excess pore water pressure during the pile driving is the current research focus. The permeable pipe pile, which is featured by series of drainage hole distributed along the pile shaft, can accelerate the dissipation of excess pore water pressure and the soil consolidation. The effect ofreducing the soil compaction and speeding up the dissipation of excess pore water pressure during the pile driving is inherent in the service of permeable pipe pile, which can improve engineering efficiency and save project cost. The technique of permeable pipe pile, combining the advantage of pile foundation and drainage consolidation method, can apply to pile foundation construction and ground treatment with high economic efficiency. In this paper, a review of recent advances in permeable pipe pile is carried out, and the research results of the bearing performance, permeable performance, and drainage hole distribution optimization of permeable pipe pile are summarized. In the end, brief discussion of the existing problems and the future research direction in permeable pipe pile is conducted.
  • [1]
    赵春风, 杜兴华, 赵 程, 等. 中掘预应力管桩挤土效应试验研究[J]. 岩土工程学报, 2013, 35(3): 415-421. (ZHAO Chun-feng, DU Xing-hua, ZHAO Cheng, et al. Squeezing effect of inner-digging prestressed piles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 415-421. (in Chinese))
    [2]
    叶观宝, 张 振, 邢皓枫, 等. 组合型复合地基固结分析[J]. 岩土工程学报, 2011, 33(1): 45-49. (YE Guan-bao, ZHANG Zhen, XING Hao-feng, et al. Consolidation of combined composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 45-49. (in Chinese))
    [3]
    刘汉龙. 一种抗液化排水刚性桩: 中国, ZL 2873886[P]. 2007. (LIU Han-long. An anti-liquefied rigid pile: Chinese Patent, ZL 2873886[P]. 2007. (in Chinese))
    [4]
    梅国雄, 梅 岭, 张 乾. 自适应减压排水管桩及其制备工艺: 中国, ZL201110123235.6[P]. 2011. (MEI Guo-xiong, MEI Ling, ZHANG Qian. Adaptive decompression drainage pipe pile and its preparation process: Chinese Patent, ZL201110123235.6[P]. 2011. (in Chinese))
    [5]
    戴郑新. 透水管桩承载性能研究[D]. 南京: 南京工业大学, 2015. (DAI Zheng-xin. Analysis of permeable pipe bearing capacity[D]. Nanjing: Nanjing University of Technology, 2015. (in Chinese))
    [6]
    黄 勇, 王 军, 梅国雄. 透水管桩加速超静孔压消散的单桩模型试验研究[J]. 岩土力学, 2016, 37(10): 2893-2898, 2908. (HUANG Yong, WANG Jun, MEI Guo-xiong. Model experimental study of accelerating dissipation of excess pore water pressure in soil around a permeable pipe pile[J]. Rock and Mechanics, 2016, 37(10): 2893-2898, 2908. (in Chinese))
    [7]
    黄 勇, 梅国雄, 王钰轲. 透水管桩的群桩沉桩室内模型试验研究[J]. 河北工程大学学报(自然科学版), 2016, 33(3): 18-23. (HUANG Yong, MEI Guo-xiong, WANG Yu-ke. Laboratory model experimental investigation of permeable pipe piles[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2016, 33(3): 18-23. (in Chinese))
    [8]
    NI P, MANGALATHU S, MEI G, et al. Permeable piles: An alternative to improve the performance of driven piles[J]. Computers and Geotechnics, 2017, 84: 78-87.
    [9]
    江苏省建筑安全监督总站. 苏建质安[2015]311号自适应减压排水管桩施工工法[S]. 南京: 江苏省建筑安全监督总站, 2015. (Sujianzhi'an [2015]311 Construction method for permeable pipe pile[S]. Nanjing: Building safety supervisory office of Jiangsu Province, 2015. (in Chinese))
  • Related Articles

    [1]ZHAN Zheng-gang, ZHANG He-zuo, CHENG Rui-lin, QIU Huan-feng. Application of methods for life-cycle deformation control of high concrete-faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1141-1147. DOI: 10.11779/CJGE202206019
    [2]LI Lin, LI Jing-pei, SUN De-an, ZHANG Ling-xiang. Prediction method for time-dependent load-settlement relationship of a jacked pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2327-2334. DOI: 10.11779/CJGE201712023
    [3]LIU Xin, GAN Liang-qin, SHENG Ke, HONG Bao-ning. Experimental study on service life of foamed mixture lightweight soil based on method of accelerated stress tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1793-1799. DOI: 10.11779/CJGE201710006
    [4]HU Bin, WANG Xin-gang, FENG Xiao-la, HU Qi-chen, WANG Wei. Analytical prediction and numerical simulation of effect of a deep excavation project of wuhan metro on nearby viaduct[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 368-373. DOI: 10.11779/CJGE2014S2064
    [5]DENG Dong-ping, LI Liang, ZHAO Lian-heng, LIU Jian-hao. Prediction of service life of pre-stressed anchorage bolt (cable) due to corrosion expansion[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1464-1472. DOI: 10.11779/CJGE201408012
    [6]Martin Wieland, R.Peter Brenner. Life-span of concrete and embankment dams and economic benefits of dam safety projects[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1692-1698.
    [7]HAN Xuan, LI Ning. A predicting model for ground movement induced by non-uniform convergence of tunnel[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 347-352.
    [8]REN Jianxi, JIANG Yu, GE Xiurun. Test and analysis on rock fatigue life due to affecting factors under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 47-50.
    [9]Settlement prediction methods considering creep[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 416-418.
    [10]Zhang Zhenying, Wu Shiming, Chen Yunmin. Experimental research on the parameter of life rubbish in city[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 38-42.
  • Cited by

    Periodical cited type(11)

    1. 吕宏强,唐天成,包晨宇. 基于光滑粒子流体动力学法的流固共轭自然对流传热数值模拟. 航空学报. 2025(05): 180-196 .
    2. 付永帅. 基于机器视觉的水利枢纽工程生态脆弱区地基渗流仿真分析. 水利规划与设计. 2024(01): 89-93+102 .
    3. 高玉峰,王玉杰,张飞,姬建,陈亮,倪钧钧,张卫杰,宋健,杨尚川. 边坡工程与堤坝工程研究进展. 土木工程学报. 2024(08): 97-118 .
    4. 张德沧,毛佳,戴妙林,邵琳玉,赵兰浩. 圆化离散单元法的改进及其在岩体断裂过程中的应用. 岩土工程学报. 2024(09): 1974-1983 . 本站查看
    5. 黄帅,刘传正,GODA Katsuichiro. 光滑粒子流体动力学方法在饱和边坡地震滑移大变形中的适用性研究. 岩土工程学报. 2023(02): 336-344+443 . 本站查看
    6. 桂滨,林岩松,关彦斌. 高压浆液挤压饱和土体变形模拟的SPH方法. 公路交通科技. 2023(03): 51-57 .
    7. 王占彬,张卫杰,张健,代登辉,高玉峰. 基于并行SPH方法的地震滑坡对桥桩的冲击作用. 湖南大学学报(自然科学版). 2022(07): 54-65 .
    8. 张卫杰,余瑞华,陈宇,高玉峰,黄雨. 强度指标影响下滑坡运动特征及参数反分析. 岩土工程学报. 2022(12): 2304-2311 . 本站查看
    9. 戴轩,郑刚,程雪松,霍海峰. 基于DEM-CFD方法的基坑工程漏水漏砂引发地层运移规律的数值模拟. 岩石力学与工程学报. 2019(02): 396-408 .
    10. 杜彬,邱兆勇. 防渗墙技术在堤坝施工中的应用. 水利科学与寒区工程. 2019(02): 123-125 .
    11. 张卫杰,郑虎,王占彬,高玉峰. 基于三维并行SPH模型的土体流滑特性研究. 工程地质学报. 2018(05): 1279-1284 .

    Other cited types(6)

Catalog

    Article views (363) PDF downloads (300) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return