• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Song-yu, CAI Guang-hua, DU Guang-yin, WANG Liang. Model tests on carbonated reactive MgO mixing piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 136-139. DOI: 10.11779/CJGE2017S2034
Citation: LIU Song-yu, CAI Guang-hua, DU Guang-yin, WANG Liang. Model tests on carbonated reactive MgO mixing piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 136-139. DOI: 10.11779/CJGE2017S2034

Model tests on carbonated reactive MgO mixing piles

More Information
  • Received Date: August 01, 2017
  • Published Date: December 19, 2017
  • The soft soils can meet the bearing needs of the constructions and infrastructures through the appropriate artificial treatment, and the carbonated MgO-mixing pile method is an innovative foundation treatment technology, which is that the reactive MgO-mixing pile takes a series of physical and chemical reactions with CO2 gas, forming a composite foundation with good stability and high bearing capacity. On this basis, the indoor mixing pile model tests are carried out under different initial water contents and different CO2 ventilation pressures by use of the artificial dig-hole pile method, and the temperature of mixing piles is monitored during the carbonation process, as well as these tests are performed after carbonation including unconfined compressive strength and water content. The results indicate that the pile temperature can reach the highest in less than two hours’ carbonation, and the temperature peak is the highest at the initial water content of 20%, the second at 15% and the lowest at 30%. The temperature peak increases with the increase of CO2 ventilation pressure. The strength of carbonated piles decreases with the increase of the initial water content while increases with the increase of the CO2 ventilation pressure, and the strength decreases with the water content of the carbonated soils in the form of exponential function. The carbonated mixing-pile model tests will provide theoretical guidance for the MgO-carbonation technology in the engineering application of soft soil foundation reinforcement.
  • [1]
    刘松玉, 钱国超, 章定文. 粉喷桩复合地基理论与工程应用[M]. 北京: 中国建筑工业出版社, 2006. (LIU Song-yu, QIAN Guo-chao, ZHANG Ding-wen. The principle and appliciation of dry jet mixing composite foundation [M]. Beijing: China Architecture & Building Press. 2006. (in Chinese))
    [2]
    MIURA N, SHEN S L, KOGA K, et al. Strength change of the clay in the vicinity of soil cement column[J]. Journal of Geotechnical Engineering, Japanese Society of Civil Engineers, 1998, 556(53): 209-221.
    [3]
    SHEN S L, HAN J, HUANG X C, et al. Laboratory studies on property changes in surrounding clays due to installation of deep mixing columns[J]. Marine Georesources and Geotechnology, 2003, 21(1): 15-35.
    [4]
    易耀林. 基于可持续发展的搅拌桩新技术与理论[D]. 南京:东南大学, 2013.(YI Yao-lin. Sustainable novel deep mixing methods and theory[D]. Nanjing: Southeast University, 2013. (in Chinese))
    [5]
    易耀林, MARTIN Liska, ABIR Al-Tabbaa, 等. 一种土壤的碳化固化方法及其装置: 中国, Z.L.201010604013.1[P]. 2010. (YI Yao-lin, LISKA M, AL-TABBAA A, et al. A kind of soil carbonation curing method and device: China, Z.L. 201010604013.1[P]. 2010. (in Chinese))
    [6]
    刘松玉, 李 晨. 氧化镁活性对碳化固化效果影响研究[J]. 岩土工程学报, 2015, 37(1): 148-155. (LIU Song-yu, LI Chen. Influence of MgO activity on the stabilization efficiency of carbonated mixing method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 148-155. (in Chinese))
    [7]
    CAI G H, LIU S Y, DU Y J, et al. Strength and deformation characteristics of carbonated reactive magnesia treated silt soil[J]. Journal of Central South University, 2015, 22(5): 1859-1868.
    [8]
    CAI G H, DU Y J, LIU S Y, et al Physical properties, electrical resistivity and strength characteristics of carbonated silty soil admixed with reactive magnesia[J]. Canadian Geotechnical Journal, 2015, 52(11): 1699-1713.
  • Cited by

    Periodical cited type(20)

    1. 刘新荣,罗新飏,郭雪岩,周小涵,王浩,许彬,郑颖人. 巫山段岸坡水岩劣化特征及危岩失稳破坏模式. 工程地质学报. 2025(01): 240-257 .
    2. 郭双枫,府金宇,张鹏,李宁. 断层控制的蠕滑型顺层岩质滑坡变形破坏机制与失稳模式. 地震工程学报. 2025(03): 542-553 .
    3. 白继航. 基于数值模拟的顺层岩质边坡动力响应研究. 山西交通科技. 2025(02): 62-65+110 .
    4. 刘新荣,王浩,郭雪岩,罗新飏,周小涵,许彬. 考虑消落带岩体劣化影响的典型危岩岸坡稳定性研究. 岩土力学. 2024(02): 563-576 .
    5. 何钰铭,赵振洋,谢迪,王金波,黄宁. 三峡库区岩质库岸劣化变形演化过程与规律分析——以破水峡库岸为例. 中国资源综合利用. 2024(02): 26-29 .
    6. 谢周州,赵炼恒,李亮,黄栋梁,张子健,周靖. 基于振动台试验的不同含石率土-石混合体边坡地震动响应差异性研究. 岩土力学. 2024(08): 2324-2337 .
    7. 周开挥,王玉良,韩嘉琦. 德兴铜矿南平山边坡稳定性分析及治理. 建筑技术开发. 2024(08): 123-126 .
    8. 赵黎,粟登峰,谭宝会,胡颖鹏,陈帮洪,李正国. 基于CRITIC-GRA-AHP法的敏感性排序理论及其在边坡稳定性分析中的应用. 矿业研究与开发. 2024(09): 82-93 .
    9. 张嘉伦,马强,蒋汇鹏. P_1波在饱和土和饱和冻土介质分界面上的透反射问题研究. 岩土力学. 2024(10): 3139-3152 .
    10. 王通,刘先峰,侯召旭,张俊,邵珠杰,田士军,胡金山. 碎裂状顺层岩质边坡地震动力响应与破坏模式. 工程科学与技术. 2023(02): 39-49 .
    11. 李天降. 富含伊利石软弱夹层的宣威群路堑顺层边坡开挖优化分析. 安全与环境工程. 2023(02): 129-135 .
    12. 刘新荣,郭雪岩,许彬,周小涵,曾夕,谢应坤,王?. 含消落带劣化岩体的危岩边坡动力累积损伤机制研究. 岩土力学. 2023(03): 637-648 .
    13. 蒋汇鹏,马强,曹亚鹏. P波在弹性介质与饱和冻土介质分界面上的透反射问题研究. 岩土力学. 2023(03): 916-929 .
    14. 周昌,马文超,胡元骏,史光明. 基于透明土的库水位骤降下消落带滑坡-伞型锚体系变形破坏机理. 工程地质学报. 2023(04): 1407-1417 .
    15. 邹广明. 基于模型试验的堤防岸坡土层含水特征及安全稳定性影响研究. 四川水利. 2023(04): 38-42 .
    16. 黄浩,余姝,郭健,赵鹏,张枝华. 顺层陡倾斜坡溃屈破坏机理研究. 煤炭科技. 2023(05): 9-16 .
    17. 宋健. 某高速公路岩质高边坡破坏机理及稳定性分析. 山西建筑. 2023(24): 82-85 .
    18. 魏宇,曾令涛. 岩质高边坡稳定性分析及防治措施研究——以洋溪水利枢纽船闸下引航道高边坡为例. 广西水利水电. 2023(06): 1-8 .
    19. 殷跃平,王鲁琦,赵鹏,张枝华,黄波林,王雪冰. 三峡库区高陡岸坡溃屈失稳机理及防治研究. 水利学报. 2022(04): 379-391 .
    20. 宋俊宏. 基于PFC的乔连河岸坡岩石力学特性及动力响应特征研究. 甘肃水利水电技术. 2022(06): 27-31+37 .

    Other cited types(9)

Catalog

    Article views PDF downloads Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return