• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZUO Zi-bo, HUANG Yu-lin, WU Xiao-jian. Back analysis of construction of large deep excavations using intelligent optimization algorithm[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 128-131. DOI: 10.11779/CJGE2017S2032
Citation: ZUO Zi-bo, HUANG Yu-lin, WU Xiao-jian. Back analysis of construction of large deep excavations using intelligent optimization algorithm[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 128-131. DOI: 10.11779/CJGE2017S2032

Back analysis of construction of large deep excavations using intelligent optimization algorithm

More Information
  • Received Date: August 01, 2017
  • Published Date: December 19, 2017
  • By introducing the artificial intelligence technology, on improved Nelder-Mead acceleration algorithm based on the neural network is proposed to obtain better optimization results. A back analysis method for construction of large deep excavations using field observations is established. 3D numerical simulation analyses using the intelligent optimization technique are performed to forecast the horizontal deformation of the wall, axial force of the supports and displacement of the adjacent energy supply pipelines at later stages based on the background of excavation with an area of 93383. The results show that the convergence of the calculation is faster using the proposed method, and the number of iterations decreases by up to 86.9% compared with that of the Nelder-Mead algorithm. The predicted results are in good agreement with the monitoring data.
  • [1]
    侯学渊, 刘国彬, 黄院雄. 城市基坑工程发展的几点看法[J]. 施工技术, 2000, 29(1): 5-7. (HOU Xue-yuan, LIU Guo-bin, HUANG Yuan-xiong. Several views on the development of urban foundation work[J]. Construction Technology, 2000, 29(1): 5-7. (in Chinese))
    [2]
    HASHASH Y M A, LEVASSEUR S, OSOULI A, et al. Comparison of two inverse analysis techniques for learning deep excavation response[J]. Computers and Geotechnics, 2010(37): 323-333.
    [3]
    邓子胜. 基于径向基神经网络的深基坑非线性位移反分析[J]. 岩土工程学报, 2005, 27(5): 554-557. (DENG Zi-sheng. Nonlinear displacement back-analysis for deep excavation based on radial basis neural network[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 554-557. (in Chinese))
    [4]
    JUANG C H, LUO Z, ATAMTURKTUR S, et al. Bayesian updating of soil parameters for braced excavations using field observations[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2013, 139(3): 395-406.
    [5]
    MURAKAMI A. The role of Kalman filtering in an inverse analysis of elasto-plastic material[J]. Proceedings of the Japan Academy, 2002, 78(B): 250-255.
    [6]
    贾善坡, 陈卫忠, 谭贤君, 等.大岗山水电站地下厂房区初始地应力场Nelder-Mead 优化反演研究[J]. 岩土力学, 2008, 29(9): 2341-2348. (JIA Shan-po, CHEN Wei-zhong, TAN Xian-jun, et al. Nelder-Mead algorithm for inversion analysis of in-situ stress field of underground powerhouse area of Dagangshan Hydropower Station[J]. Rock and Soil Mechanics, 2008, 29(9): 2341-2348. ( in Chinese))
    [7]
    彭军龙, 张学民, 阳军生, 等. 地铁深基坑支护的遗传神经网络位移反分析[J]. 岩土力学, 2007, 28(10): 2118-2122. (PENG Jun-long, ZHANG Xue-min, YANG Jun-sheng, et al. Displacement back analysis of deep foundation pit for metro based on genetic algorithm and neural network[J]. Rock and Soil Mechanics, 2007, 28(10): 2118-2122. (in Chinese))
    [8]
    OBRZUD R F, TRUTY A, VULLIET L. Numerical modeling and neural networks to identify model parameters from piezocone tests: Ⅱ Multi-parameter identification from piezocone data[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(6):743-779.

Catalog

    Article views (370) PDF downloads (248) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return