• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GAO Hong-mei, BU Chun-yao, WANG Zhi-hua, ZHOU Wei, CHEN Guo-xing. Seismic stability of anti-sliding cantilever retaining wall with EPS composite soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2278-2286. DOI: 10.11779/CJGE201712017
Citation: GAO Hong-mei, BU Chun-yao, WANG Zhi-hua, ZHOU Wei, CHEN Guo-xing. Seismic stability of anti-sliding cantilever retaining wall with EPS composite soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2278-2286. DOI: 10.11779/CJGE201712017

Seismic stability of anti-sliding cantilever retaining wall with EPS composite soil

More Information
  • Received Date: September 01, 2016
  • Published Date: December 24, 2017
  • Shaking table tests are conducted on the inverted T-shape cantilever retaining walls with an anti-sliding tooth to comparatively study the seismic stability characteristics using EPS composite soil and Nanjing fine sand as backfills, respectively. The seismic responses of wall-soil system and dynamic earth pressure distribution behind the wall are comparatively analyzed. The influences of displacement modes of retaining wall and the properties of backfill on dynamic earth thrust are emphasized. The experimental results indicate that when using EPS composite soil as backfill, the acceleration response on the backfill surface is relatively small. The contribution of dynamic earth thrust to the wall rotation increases with the increasing input peak excitation. The inertial interaction between wall and soil is closely related to the dynamic deformation mode of backfill. The distribution of dynamic earth thrust behind the wall when using sand as backfill is obviously different from that using EPS composite soil. The relationship between the dynamic earth thrust and the peak ground acceleration for sand-wall system is nonlinear, and the acting position of earth thrust is approximately 2/3 wall height. A linear relationship exists for EPS composite soil-wall system, and the acting position is close to 1/3 wall height. The acting position of earth thrust slightly moves down as the peak ground acceleration increases for the two test systems. Based on the comparison between test results and several classical analytic solutions, some suggestions are proposed regarding the seismic analysis of flexible retaining wall when using EPS composite soil as backfill.
  • [1]
    MIAO L C, WANG F, HAN J, et al. Properties and applications of cement-treated sand-expanded polystyrene bead lightweight fill[J]. Journal of Materials in Civil Engineering, 2013, 25(1): 86-93.
    [2]
    李明东, 朱 伟, 马殿光, 等. EPS颗粒混合轻质土的施工技术及其应用实例[J]. 岩土工程学报, 2006, 28(4): 533-536. (LI Ming-dong, ZHU Wei, MA Dian-guang, et al. Construction technology and application in-situ of expanded polystyrene treated lightweight soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 533-536. (in Chinese))
    [3]
    刘汉龙, 董金梅, 周云东, 等. 聚苯乙烯轻质混合土应力-应变特性分析[J]. 岩土工程学报, 2004, 26(5): 579-583. (LIU Han-long, DONG Jin-mei, ZHOU Yun-dong, et al. Study on the stress-strain characteristics of light heterogeneous soil mixed with expanded polystyrene[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 579-583. (in Chinese))
    [4]
    王庶懋, 高玉峰. 砂土与EPS颗粒混合的轻质土的动剪切模量衰减特性分析[J]. 岩土力学, 2007, 28(5): 1001-1005. (WANG Shu-mao, GAO Yu-feng. Study on degradation behavior of dynamic shear modulus for lightweight sand-EPS beads soil[J]. Rock and Soil Mechanics, 2007, 28(5): 1001-1005. (in Chinese))
    [5]
    GAO H M, CHEN Y M, LIU H L, et al. Creep behavior of EPS composite soil[J]. Science China (Technological Sciences), 2012, 155(11): 3070-3080.
    [6]
    ATIK A L, SITAR N. Seismic earth pressures on cantilever retaining structures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(10): 1324-1333.
    [7]
    GAZETAS G, PSARROPOULOS P, ANASTASOPOLOUS I, et al. Seismic behaviour of flexible retaining systems subjected to short-duration moderately strong excitation[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(7): 537-550.
    [8]
    JO S B, HA J G, YOO M, et al. Seismic behavior of an inverted T-shape flexible retaining wall via dynamic centrifuge tests[J]. Bulliten of Earthquake Engineering, 2014, 12(2): 961-980
    [9]
    WILSON P. Large scale passive force-displacement and dynamic earth pressure Experiments and Simulations[D]. San Diego: University of California, 2009.
    [10]
    KOSEKI J, TOTSUOKA F, MUNAF Y, et al. A modified procedure to evaluate active earth pressure at high seismic loads[J]. Soils and Foundations, 1997: 209-216.
    [11]
    MIKOLA R G, CANDIA G, SITAR N. Seismic earth pressures on retaining structures and basement walls in cohesionless soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(10): 1-9.
    [12]
    WILSON P, ELGAMAL A. Shake table lateral earth pressure testing with dense c-ϕ backfill[J]. Soil Dynamics and Earthquake Engineering, 2015, 71: 13-26.
    [13]
    MONONOBE N, MATUO H. On determination of earth pressures during earthquakes[C]// Proceedings of the World Engineering Congress. Tokyo, 1929.
    [14]
    OKABE S. General theory on earth pressure and seismic stability of retaining wall and dam[J]. Journal of Japanese Society of Civil Engineering, 1924, 10(6): 1277-323.
    [15]
    WOOD J H. Earthquake-induced pressures on rigid wall structure[J].Bulletin of the New Zealand National Society for Earthquake Engineering, 1975, 8(3): 175-186.
    [16]
    MADABHUSHI S P G, ZENG X. Simulating seismic response of cantilever retaining walls[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(5): 539-549.
    [17]
    KONTOE S, ZDRAVKOVIC L, MENKITI C O, et al. Seismic response and interaction of complex soil retaining systems[J]. Computers and Geotechnics, 2012, 39: 17-26.
    [18]
    陈国兴, 王志华, 左 熹, 等. 振动台试验叠层剪切型土箱的研制[J]. 岩土工程学报, 2010, 32(1): 89-97. (CHEN Guo-xing, WANG Zhi-hua, ZUO Xi, et al. Development of laminar shear soil container for shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 89-97. (in Chinese))
    [19]
    王志华, 周恩全, 陈国兴, 等. 循环荷载下饱和砂土固-液相变特征[J]. 岩土工程学报, 2012, 34(9): 1604-1610. (WANG Zhi-hua, ZHOU En-quan, CHEN Guo-xing, et al. Characteristics of solid-liquid phase change of saturated sands under cyclic loads[J].Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1604-1610. (in Chinese))
    [20]
    CHEN G X, CHEN S, QI C Z, et al. Shaking table tests on a three-arch type subway station structure in a liquefiable soil[J]. Bulletin of Earthquake Engineering, 2015, 13(6): 1675-1701.
    [21]
    Canadian Geotechnical Society. Canadian foundation engineering manual, Third Edition[S]. 1992.
    [22]
    RICHARDS R, HUANG C, FISHMAN K. Seismic earth pressure on retaining structures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(9): 771-778.
    [23]
    VELETSOS A S, YOUNAN A H. Dynamic response of cantilever retaining walls[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(2): 161-172.
    [24]
    SEED H B, WHITMAN R V. Design of earth retaining structures for dynamic loads[C]// Proceedings of the ASCE Specialty Conference on Lateral Stresses in the Ground and the Design of Earth Retaining Structures. New York, 1970.
    [25]
    National Cooperative Highway Research Program. Manuals for Design of Bridge Foundations[S]. 1991.
  • Cited by

    Periodical cited type(10)

    1. 唐丽云,王鹏宇,郑娟娟,于永堂,金龙,崔玉鹏,罗滔. 冰水赋存演化下冻结土石混合体-结构界面强度劣化机制及模型. 岩土工程学报. 2024(05): 988-997 . 本站查看
    2. 田雨,汪恩良,谢崇宝,任志凤,于俊. 考虑辐照影响的寒区堤防冻深预测模型试验研究. 水利学报. 2023(09): 1111-1121 .
    3. LiYun Tang,ShiYuan Sun,JianGuo Zheng,Long Jin,YongTang Yu,Tao Luo,Xu Duan. Pore evolution and shear characteristics of a soil-rock mixture upon freeze-thaw cycling. Research in Cold and Arid Regions. 2023(04): 179-190 .
    4. 李刚,唐丽云,金龙,崔玉鹏,奚家米. 冻融循环下土石混合体强度劣化特性研究. 河南科技大学学报(自然科学版). 2022(04): 67-75+7-8 .
    5. 汪恩良,田雨,刘兴超,任志凤,胡胜博,于俊,刘承前,李宇昂. 基于WOA-BP神经网络的超低温冻土抗压强度预测模型研究. 力学学报. 2022(04): 1145-1153 .
    6. 秦庆词,李克钢,李明亮,李旺,刘博. 基于核磁共振技术的白云岩微观损伤致劣机制研究. 岩石力学与工程学报. 2022(S1): 2944-2954 .
    7. 荣传新,李承涛,王彬,施志斌. 砂层冻结过程中未冻水含量核磁共振实验研究. 重庆科技学院学报(自然科学版). 2022(05): 90-96 .
    8. 汪恩良,任志凤,韩红卫,田雨,胡胜博,刘兴超. 超低温冻结黏土单轴抗压力学性质试验研究. 岩土工程学报. 2021(10): 1851-1860 . 本站查看
    9. 李帅君,张鹏,张莲海,陈雪萍,展静,吴青柏. 多层核磁探测介质内温度梯度下THF水合物形成特征. 中国科学:物理学 力学 天文学. 2020(08): 125-135 .
    10. 唐丽云,王鑫,邱培勇,金龙. 冻土区土石混合体冻融交界面剪切性能研究. 岩土力学. 2020(10): 3225-3235 .

    Other cited types(19)

Catalog

    Article views (337) PDF downloads (233) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return