• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CUI Sheng-hua, PEI Xiang-jun, WANG Gong-hui, HUANG Run-qiu. Initiation of a large landslide triggered by Wenchuan earthquake based on ring shear tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2268-2277. DOI: 10.11779/CJGE201712016
Citation: CUI Sheng-hua, PEI Xiang-jun, WANG Gong-hui, HUANG Run-qiu. Initiation of a large landslide triggered by Wenchuan earthquake based on ring shear tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2268-2277. DOI: 10.11779/CJGE201712016

Initiation of a large landslide triggered by Wenchuan earthquake based on ring shear tests

More Information
  • Received Date: September 27, 2016
  • Published Date: December 24, 2017
  • A great number of landslides were triggered during the 2008 Wenchuan earthquake. Among them, the Niumiangou landslide is the large-scale landslide in the epicenter area. The site investigation shows that the landslide mass collides to the NE side of the valley immediately after initiation. The moving velocity estimated is 19.8 m/s, suggesting the characteristics of high initial velocity. The materials are taken from the source area and a series of ring-shear tests are conducted. The results show that the materials have a high liquefaction potential under undrained condition. They are easy to liquefy and the apparent friction angle is only 9.4° under undrained cyclic loading condition. The liquefaction of the materials in sliding zone during earthquake may cause the initiation with high velocity of Niumiangou landslide. Through an energy approach, the dissipated energy in cyclic loading tests and the possible energy dissipated to the soil layer in the slope by the earthquake are estimated. The peak acceleration for triggering sample failure is 192 gal, and the energy for sample liquefaction is 2.3×104 J/m2. It is inferred that the possible seismic energy that can be dissipated to initiate the slope failure on the source area can be much greater than the value required for the initiation of liquefaction failure. The slope instability might have been occurring several seconds after the arrival of seismic motion.
  • [1]
    殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报, 2008, 16(4): 433-444. (YIN Yue-ping. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 2008, 16(4): 433-444. (in Chinese))
    [2]
    BURCHFIEL B C, ROYDEN L H, VAN DER Hilst R D, et al. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People’s Republic of China[J]. GSA Today, 2008, 18(7): 4-11.
    [3]
    LI Y Q, JIA D, SHAW J H, et al. Structural interpretation of the coseismic faults of the Wenchuan earthquake: three-dimensional modeling of the Longmen Shan fold-and-thrust belt[J]. J Geophys Res, 2010, 115(B04317): 1-26.
    [4]
    GORUM T, FAN X M, VAN Westen C J, et al. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake[J]. Geomorphology, 2011, 133(3): 152-167.
    [5]
    DAI F C, XU C, YAO X, et al. Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China[J]. J Asian Earth Sci, 2011, 40(4): 883-895.
    [6]
    许 冲, 徐锡伟. 2008年汶川地震导致的斜坡物质响应率及其空间分布规律分析[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3888-3908. (XU Chong, XU Xi-wei. Response rate of seismic slope mass movements related to 2008 Wenchuan earthquake and its spatial distribution analysis[J]. Chineses Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3888-3908. (in Chinese))
    [7]
    黄润秋, 张伟锋, 裴向军. 大光包滑坡工程地质研究[J]. 工程地质学报, 2014, 22(4): 557-585. (HUANG Run-qiu, ZHANG Wei-feng, PEI Xiang-jun. Engineering geological study on Daguangbao landslide[J]. Journal of Engineering Geology, 2014, 22(4): 557-585. (in Chinese))
    [8]
    黄河清, 赵其华. 汶川地震诱发文家沟巨型滑坡-碎屑流基本特征及成因机制初步分析[J]. 工程地质学报, 2010, 18(2): 168-177. (HUANG He-qing, ZHAO Qi-hua. Basic characteristics and preliminary mechanism analysis of large scale rockslide-sturzstrom at Wenjiagou triggered by Wenchuan earthquake[J]. Journal of Engineering Geology, 2010, 18(2): 168-177. (in Chinese))
    [9]
    孙 萍, 张永双, 殷跃平, 等. 东河口滑坡-碎屑流高速远程运移机制探讨[J]. 工程地质学报, 2009, 17(6): 737-744. (SUN Ping, ZHANG Yong-shuang, YIN Yue-ping, et al. Discussion on long run-out sliding mechanism of Donghekou landslide-debris flow[J]. Journal of Engineering Geology, 2009, 17(6): 737-744.(in Chinese))
    [10]
    DAI F C, TU X B, XU C, et al. Rock avalanches triggered by oblique-thrusting during the 12 May 2008 Ms 8.0 Wenchuan earthquake, China[J]. Geomorphology, 2011, 132(3/4): 300-318.
    [11]
    YIN Y P, ZHENG W M, LI X C, et al. Catastrophic landslides associated with the M8. 0 Wenchuan earthquake[J]. Bull Eng Geol Environ, 2011, 70(1): 15-32.
    [12]
    WANG G H, HUANG R Q, CHIGIRA M, et al. Landslide amplification by liquefaction of runout-path material after the 2008 Wenchuan (M8·0) earthquake, China[J]. Earth Surf Proc Land, 2013, 38(3): 265-274.
    [13]
    YANG C M, CHENG H Y, TSAO C C. The kinematics and initiation mechanisms of the earthquake-triggered Daguangbao landslide[J]. Geophysical Research Abstracts, V.17,EGU2015-13014-1.
    [14]
    胡明鉴, 汪发武, 程谦恭. 基于高速环剪试验易贡巨型滑坡形成原因试验探索[J]. 岩土工程学报, 2009, 31(10): 1602-1606. (HU Ming-jian, WANG Fa-wu, CHENG Qian-gong. Formation of tremendous Yigong landslide based on high-speed shear tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1602-1606. (in Chinese))
    [15]
    黄润秋, 裴向军, 李天斌. 汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J]. 工程地质学报, 2008, 16(6): 730-741. (HUANG Run-qiu, PEI Xiang-jun, LI Tian-bin. Basic characteristics and formation mechanism of the largest scale landslide at Daguangbao occurred during the Wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(6): 730-741.(in Chinese))
    [16]
    许 强, 裴向军, 黄润秋. 汶川地震大型滑坡研究[M]. 北京: 科学出版社, 2009. (XU Qiang, PEI Xiang-jun, HUANG Run-qiu. Large-scale landslides induced by the Wenchuan earthquake[M]. Beijing: Science Express, 2009. (in Chinese))
    [17]
    XING A G, XU Q. GAN J. On characteristics and dynamic analysis of the Niumian valley rock avalanche triggered by the 2008 Wenchuan earthquake, Sichuan, China[J]. Environ Earth Sci, 2015, 73(7): 3387-3401.
    [18]
    ZHANG M, YIN Y P, WU S R, et al. Dynamics of the Niumiangou creek rock avalanche triggered by 2008 Ms 8.0 Wenchuan earthquake, Sichuan, China[J]. Landslides, 2011, 8(3): 363-371.
    [19]
    CHOW T V. Open channel hydraulics[M]. New York: McGraw-Hill, 1959.
    [20]
    SASSA K. The mechanism starting liquefied landslides and debris flows[C]// Proceedings of 4th International Symposium on Landslides. Toronto, 1984: 349-354.
    [21]
    SASSA K. Access to the dynamics of landslides during earthquakes by a new cyclic loading high-speed ring-shear apparatus (keynote paper)[C]// 6th InternationalSymposium on Landslides, “Landslides”. Christchurch, 1992: 1919-1937.
    [22]
    SASSA K. A new intelligent-type dynamic loading ring-shear apparatus[J]. Landslide News, 1997(10): 33.
    [23]
    SASSA K, FUKUOKA H, WANG G H, et al. Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics[J]. Landslides, 2004, 1(1): 7-19.
    [24]
    XING A G, WANG G H, LI B, et al. Long-runout mechanism and landsliding behaviour of large catastrophic landslide triggered by heavy rainfall in guanling, guizhou, China[J]. Can Geotech, 2014, 52(7): 1-11.
    [25]
    WANG G H, SASSA K. Seismic loading impacts on excess pore-water pressure maintain landslide triggered flowslides[J]. Earth Surf Proc Land, 2009, 34(2): 232-241.
    [26]
    KUENZA K, TOWHATA I, ORENSE R P, et al. Undrained torsional shear tests on gravelly soils[J]. Landslides, 2004 1(3): 185-194.
    [27]
    ISHIHARA K. Liquefaction and flow failure during earthquakes[J]. Géotechnique, 1993, 43(3): 351-451.
    [28]
    SASSA K, WANG G H, FUKUOKA H. Performing undrained shear tests on saturated sands in a new intelligent type of ring-shear apparatus[J]. Geotech Test J, 2003, 26(3): 257-265.
    [29]
    SASSA K, WANG G H, FUKUOKA H, et al. Shear- displacement-amplitude dependent pore-pressure generation in undrained cyclic loading ring shear tests: An energy approach[J]. J Geotech Geoenviron, 2005, 131(6): 750-761.
    [30]
    TRIFUNAC M D. Energy of strong motion at earthquake source [J]. Soil Dyn Earthq Eng, 2008, 28(1): 1-6.
    [31]
    TRIFUNAC M D, BRADY A G. A study on the duration of strong earthquake ground motion[J]. Bull Seismol Soc Am, 1975, 65(3): 581-626.
  • Cited by

    Periodical cited type(6)

    1. 蒋承辉. 基于BOTDA的光纤位移传感器在建筑基坑沉降监测中的实验研究. 企业科技与发展. 2025(01): 98-101 .
    2. 吴哲辉,何宁,姜彦彬,孔洋,槐伟. 堆石坝内部二维变形一体化分布式监测技术试验研究. 水利信息化. 2025(02): 56-63 .
    3. 管翰林,蒋陵,王驭扬,张灿. 基于DOFS技术的电力光缆多维度故障预警研究. 电力电子技术. 2025(05): 78-81+105 .
    4. 赵建勋,高冰,高丽娟. 分布式光纤传感技术下架空输变电线路监测. 电子设计工程. 2025(11): 72-76 .
    5. 黄惇汉. 基于分布式光纤传感技术的车辆撞击道路护栏检测研究. 运输经理世界. 2024(22): 122-124 .
    6. 马刚,艾志涛,郭承乾,李少林,陈华,周伟. 高土石坝变形监测研究进展. 水利学报. 2024(10): 1174-1186 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return