Citation: | WANG Tian-liang, SONG Hong-fang, GUO Zhuo-hao, YUE Zu-run, LIN Yong-qing. Freeze-thaw characteristics of subgrade macadam fillings influenced by cement content and grain-size composition[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2180-2186. DOI: 10.11779/CJGE201712005 |
[1] |
荆志东, 刘俊新. 红层泥岩半刚性基床结构动态变形试验研究[J]. 岩土力学, 2010, 31(7): 2116-2121. (JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformation of semi-rigid structures of subgrade bed-mudstone of red beds[J]. Rock and Soil Mechanics, 2010, 31(7): 2116-2121. (in Chinese))
|
[2] |
杨西锋. 高纬度严寒地区高速铁路路基防冻胀设计研究[J]. 铁道标准设计, 2014, 58(8): 6-11. (YANG Xi-feng. Design research on subgrade anti-frost for high-speed railway in high latitude and severe cold region[J]. Railway Standard Design, 2014, 58(8): 6-11. (in Chinese))
|
[3] |
闫宏业, 赵国堂, 蔡德钩, 等. 高速铁路渗透性基床防冻胀结构研究[J]. 铁道建筑, 2015(5): 98-102. (YAN Hong-ye, ZHAO Guo-tang, CAI De-gou, et al. Research on anti-frost heaving structure of permeable subgrade bed on high speed railway[J]. Railway Engineering, 2015(5): 98-102. (in Chinese))
|
[4] |
赵世运, 杨彦克, 李福海, 等. 高速铁路路基冻胀特性水泥掺入的改性研究[J]. 铁道学报, 2014, 36(5): 71-75. (ZHAO Shi-yun, YANG Yan-ke, LI Fu-hai, et al. Research on cement-modified frost heave characteristics of high-speed railway subgrade[J]. Journal of the China Railway Society, 2014, 36(5): 71-75. (in Chinese))
|
[5] |
熊志文, 金兰, 程 佳, 等. 高速铁路改良粗颗粒填料冻胀特性试验研究[J]. 中国铁道科学, 2015, 36(5): 1-6. (XIONG Zhi-wen, JIN Lan, CHENG Jia, et al. Experimental study on frost heaving characteristics of improved coarse grain filling for high speed railway[J]. China Railway Science, 2015, 36(5): 1-6. (in Chinese))
|
[6] |
曾梦澜, 薛子龙, 谷世君, 等.开级配水泥稳定碎石基层路用性能的试验研究[J]. 北京工业大学学报, 2015, 41(4): 579-583. (ZENG Meng-lan, XUE Zi-long, GU Shi-jun, et al. Trial study on the pavement performance of open graded cement stabilized aggregate base[J]. Journal of Beijing University of Technology, 2015, 41(4): 579-583. (in Chinese))
|
[7] |
FARHAN A H, DAWSON A R, THOM N H, et al. Flexural characteristics of rubberized cement-stabilized crushed aggregate for pavement structure[J]. Materials and Design, 2015, 88: 897-905.
|
[8] |
李 頔, 蒋应军, 任皎龙.基于振动法的抗疲劳断裂水泥稳定碎石强度标准[J]. 建筑材料学报, 2013, 16(2): 276-283. (LI Di, JIANG Ying-jun, REN Jiao-long. Strength standard of anti-fatigue-fracture cement stabilized macadam based on vibration testing method[J]. Journal of Building Materials, 2013, 16(2): 276-283. (in Chinese))
|
[9] |
王 龙, 解晓光. 水泥稳定碎石振动与静压成型物理力学指标关系[J]. 哈尔滨工业大学学报, 2012, 44(10): 276-283. (WANG Long, XIE Xiao-guang. Relationship on index of physics and mechanics cement stabilized aggregates between vibrating and static compacting methods[J]. Journal of Harbin Institute of Technology, 2012, 44(10): 276-283. (in Chinese))
|
[10] |
DISFANI M M, ARULRAJAH A, HAGHIGHI H, et al. Flexural beam fatigue strength evaluation of crushed brick as asupplementary material in cement stabilized recycled concreteaggregates[J]. Construction and Building Materials, 2014, 68: 667-676.
|
[11] |
ARULRAJAH A, DISFANI M M, HAGHIGHI H, et al. Modulus of rupture evaluation of cement stabilized recycled glass/recycled concrete aggregate blends[J]. Construction and Building Materials, 2015, 84: 146-155.
|
[12] |
BAN H, PARK S W. Characteristics of modified soil-aggregate system and their application in pavements[J]. KSCE Journal of Civil Engineering, 2014, 18(6): 1672-1678.
|
[13] |
MA YH, GU JY, LI Y, et al. The bending fatigue performance of cement-stabilized aggregate reinforced with polypropylene filament fiber[J]. Construction and Building Materials. 2015, 83: 230-236.
|
[14] |
ERHAN Güneyisi, MEHMET Gesoglu, TURAN Özturan, et al. Fracture behavior and mechanical properties of concrete with artificial lightweight aggregate and steel fiber[J]. Construction and Building Materials, 2015, 84: 156-168.
|
[15] |
孙兆辉. 水泥稳定碎石温缩变形特性试验研究[J]. 建筑材料学报, 2009, 12(2): 249-252. (SUN Zhao-hui. Research on temperature shrinkage deformation properties of cement stabilized macadam[J]. Journal of Building Materials, 2009, 12(2): 249-252. (in Chinese))
|
[16] |
吴瑞麟, 张良陈, 韩 卓, 等. 水泥稳定碎石基层长期浸水及冻融实验研究[J]. 华中科技大学学报, 2011, 39(10): 113-115. (WU Rui-lin, ZHANG Liang-chen, HAN Zhuo, et al. Long-term water immersion and freeze-thaw cycles experiment of cement stabilized macadam bases[J]. Journal of Huazhong University of Science and Technology, 2011, 39(10): 113-115. (in Chinese))
|
[17] |
庄少勤, 刘 朴, 孙振平. 水泥稳定碎石变形性能及其影响因素[J]. 建筑材料学报, 2003, 6(4): 356-363. (ZHUANG Shao-qin, LIU Pu, SUN Zhen-ping. Investigation on deformation and its influencing factors of cement-stabilized macadam base[J]. Journal of Building Materials, 2003, 6(4): 356-363. (in Chinese))
|
[18] |
ZHANG Yu-zhi, DU Yan-liang, SUN Bao-chen. Temperature distribution analysis of high-speed railway roadbed in seasonally frozen regions based on empirical model[J]. Cold Regions Science and Technology, 2015, 114: 61-72.
|
[19] |
WANG Tian-liang, LIU Yao-jun, YAN Han, et al. An experimental study on the mechanical properties of silty soils under repeated freeze-thaw cycles[J]. Cold Regions Science and Technology, 2015, 112(4): 51-65.
|
[1] | MA Peng-fei, LI Shu-chen, YUAN Chao, ZHOU Hui-ying, WANG Man-ling, WANG Xiu-wei. Simulations of crack propagation in rock-like materials by peridynamics based on SED criterion[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1109-1117. DOI: 10.11779/CJGE202106014 |
[2] | YU Zhi-fa, YU Chang-yi, LIU Feng, YAN Shu-wang. Application of numerical manifold method in crack propagation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 751-757. DOI: 10.11779/CJGE202004019 |
[3] | YU Shu-yang, WANG Hai-jun, REN Ran, TANG Lei, ZHONG Lin-wei, ZHANG Zhi-tao, TANG Zi-xuan. Propagation of double internal cracks under uniaxial tension based on 3D-ILC[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2367-2373. DOI: 10.11779/CJGE201912024 |
[4] | WANG Hai-jun, ZHANG Jiu-dan, REN Ran, TANG Lei, ZHONG Ling-wei. Embedded cracks in brittle solids induced by laser-medium interaction (3D-ILC)[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2345-2352. DOI: 10.11779/CJGE201912021 |
[5] | CHEN Guo-qing, PAN Yuan-gui, ZHANG Guo-zheng, ZHANG Guang-ze, WANG Dong. Thermal infrared precursor information of crack propagation for rock bridges[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1817-1826. DOI: 10.11779/CJGE201910005 |
[6] | LI Meng, ZHU Zhe-ming, LIU Rui-feng, LIU Bang. Influences of holes on dynamic propagation behaviors of blasting cracks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2191-2199. DOI: 10.11779/CJGE201812005 |
[7] | ZUO Jian-ping, CHEN Yan, SONG Hong-qiang, WEI Xu. Evolution of pre-peak axial crack strain and nonlinear model for coal-rock combined body[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1609-1615. DOI: 10.11779/CJGE201709008 |
[8] | ZHU Lei, HUANG Run-qiu, YAN Ming, CHEN Guo-qing. Step-path failure mechanism of rock slopes based on crack coalescence modes in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1216-1224. DOI: 10.11779/CJGE201707007 |
[9] | RUAN Bin, CHEN Guo-xing, WANG Zhi-hua. Numerical simulation of cracks of homogeneous earth dams using an extended finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 49-54. |
[10] | SUN Yuelin, SHEN Zhenzhong, WU Yuejian, XUE Jianfeng. Analytic model for tracing crack propagation under coupled mechanical-hydrological environment[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 199-204. |