• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Jun, ZHANG Da-feng, LI Lian-you, SHEN Zhao-pu. Centrifuge modelling of working performance of foundation pile embedded in expansive clay with high liquid limit[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1770-1776. DOI: 10.11779/CJGE201710003
Citation: YANG Jun, ZHANG Da-feng, LI Lian-you, SHEN Zhao-pu. Centrifuge modelling of working performance of foundation pile embedded in expansive clay with high liquid limit[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1770-1776. DOI: 10.11779/CJGE201710003

Centrifuge modelling of working performance of foundation pile embedded in expansive clay with high liquid limit

More Information
  • Received Date: July 07, 2016
  • Published Date: October 24, 2017
  • The centrifuge tests are carried out to study the change of displacements of pile head and axial forces of four single piles embedded in strong expansive black cotton soil with high liquid limit after being submerged considering the influences of pile length, pile head load and expansion isolation measures. The self-developed rainfall facility in the centrifuge and the artificial seepage path in the model stratum control the submerging condition of the black cotton soil foundation. It is found that the effects of rainfall condition on the axial forces of piles can be divided into two phases. In the first softening phase, the wetted expansive soil provides less friction resistance, which increases the axial forces of piles. And in the second expansion draft phase, the swelling uplift of expansive soil produces more friction resistance and the axial forces of piles decrease. In addition, the displacement of pile head caused by the submerging is closely related to its load. Under rainfall conditions, the pile without load is uplifted, while the pile with load of 625 kN settles. Taking expansion isolation measures around the pile body will decrease or even eliminate the negative effects of expansive soil deformation on pile foundations.
  • [1]
    RAMESH H N, KRISHNA K V M, MAMATHA H V. Compaction and strength behavior of lime-coir fiber treated Black Cotton soil[J]. Geomechanics & Engineering, 2010, 2(1): 19-28.
    [2]
    张大峰, 杨 军, 李连友, 等. 东非地区黑棉土工程特性和桩基病害处理[J]. 建筑结构, 2015, 45(1): 72-76. (ZHANG Da-feng, YANG Jun, LI Lian-you, et al. Engineering properties of black cotton soil in East Africa and pile foundation disease treatment[J]. Building Structure, 2015, 45(1): 72-76. (in Chinese))
    [3]
    黄 卫, 钟 理, 钱振东. 路基膨胀土胀缩等级的模糊评判[J]. 岩土工程学报, 1999, 21(4): 408-413. (HUANG Wei, ZHONG Li, QIAN Zhen-dong. Fuzzy judgment about the grade of shrink and expansion for the expansive soil in the subgrade[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 408-413. (in Chinese))
    [4]
    郑健龙, 杨和平. 公路膨胀土工程[M]. 北京: 人民交通出版社, 2009. (ZHENG Jian-long, YANG He-ping. Highway expansive soil engineering[M]. Beijing: China Communications Press, 2009. (in Chinese))
    [5]
    MANELI A, KUPOLATI W K, ABIOLA O S, et al. Influence of fly ash, ground-granulated blast furnace slag and lime on unconfined compressive strength of black cotton soil[J]. Road Materials & Pavement Design, 2015, 17(1): 1-9.
    [6]
    肖宏彬, 苗 鹏. 膨胀土地基中大比例模型桩浸水试验研究[J]. 自然灾害学报, 2007, 16(6): 122-127. (XIAO Hong-bin, MIAO Peng. Soaking test of a large-scale modelling pile embedded in expansion soil ground[J]. Journal of Natural Disasters, 2007, 16(6): 122-127. (in Chinese))
    [7]
    GB50112—2013 膨胀土地区建筑技术规范[S]. 2013. (GB50112—2013 Technical code for buildings in expansive soil regions[S]. 2013. (in Chinese))
    [8]
    NELSON J D, THOMPSON E G, SCHAUT R W, et al. Design procedure and considerations for piers in expansive soils[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2012, 138(8): 945-956.
    [9]
    DONALDSON G W. The use of small-diameter piles in expansive soil[M]. South African Council for Scientific and Industrial Research, 1967.
    [10]
    王年香, 顾荣伟, 章为民, 等. 膨胀土中单桩性状的模型试验研究[J]. 岩土工程学报, 2008, 30(1): 56-60. (WANG Nian-xiang, GU Rong-wei, ZHANG Wei-min, et al. Model tests on behaviour of single pile in expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(1): 56-60. (in Chinese))
    [11]
    吴志伟, 宋汉周, 王宏宇,等. 膨胀土中基桩胀拔力原型试验研究[J]. 岩土力学, 2012, 33(增刊2):173-177. (WU Zhi-wei, SONG Han-zhou, WANG Hong-yu, et al. Prototype experimental study of expansive force of pile embedded in expansive soil[J]. Rock & Soil Mechanics, 2012, 33(S2): 173-177. (in Chinese))
    [12]
    谢立安. 浸水膨胀土对桥梁桩基承载力与摩阻力影响的研究[J]. 中外公路, 2013, 33(3): 193-196. (XIE Li-an. Influence of submerging to the bearing capacity and friction resistance of bridge piles[J]. Journal of China and Foreign Highway, 2013, 33(3): 193-196. (in Chinese))
    [13]
    XIAO H, ZHANG C, WANG Y, et al. Pile-soil interaction in expansive soil foundation: analytical solution and numerical simulation[J]. International Journal of Geomechanics, 2011, 11(3): 159-166.
    [14]
    刘 涛, 王 勇, 孙吉主, 等. 吸湿环境下膨胀土与桩接触面强度特性试验研究[J]. 岩土工程学报, 2015, 37(增刊1): 161-166. (LIU Tao, WANG Yong, SUN Ji-zhu, et al. Experimental study on pile-soil interface strength of expansive soil under environment of moisture absorption[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 161-166. (in Chinese))
    [15]
    杜延龄. 大型土工离心机基本设计原则[J]. 岩土工程学报, 1993, 15(6): 10-17. (DU Yan-ling. Fundamental design principles of large geotechnical centrifuge[J]. Chinese Jounal of Geotechnical Engineering, 1993, 15(6): 10-17. (in Chinese))
    [16]
    JGJ94—2008 建筑桩基规范[S]. 2008. (JGJ94—2008 Technical code for building pile foundations[S]. 2008. (in Chinese))
    [17]
    张春顺. 膨胀土地基中桩的荷载传递特性研究[D]. 长沙:湖南工业大学, 2006. (ZHANG Chun-shun. Research on load transfer character of pile in expansive soil foundation[D]. Changsha: Hunan University of Technology, 2006. (in Chinese))
    [18]
    陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-272. (CHEN Zheng-han. On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272. (in Chinese))
  • Related Articles

    [1]ZHOU Feng-xi, GAO Guo-yao. Multi-field coupling process of heat-moisture-salt in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 813-820. DOI: 10.11779/CJGE201905003
    [2]LI Pei-xian, WAN Hao-ming, XU Yue, YUAN Xue-qi, ZHAO Yin-peng. Parameter inversion of probability integration method using surface movement vector[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 767-776. DOI: 10.11779/CJGE201804022
    [3]WANG Chuan-wu, LI Shu-cai, NIE Li-chao, LIU Bin, GUO Qian, REN Yu-xiao, LIU Hai-dong. 3D E-SCAN resistivity inversion and optimized method in tunnel advanced prediction[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 218-227. DOI: 10.11779/CJGE201702004
    [4]WANG Chuan-wu, LI Shu-cai, LIU Bin, NIE Li-chao, ZHANG Feng-kai, SONG Jie, GUO Qian, REN Yu-xiao. 3D constrained electrical resistivity inversion method based on reference model[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1685-1694. DOI: 10.11779/CJGE201609016
    [5]LIU Zong-hui, WU Heng, ZHOU Dong, WEI Hong-yao. Application of spectrum inversion method in GPR signal processing for tunnel lining detection[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 711-717. DOI: 10.11779/CJGE201504017
    [6]LIU Bin, LI Shu-cai, NIE Li-chao, WANG Jing, SONG Jie, LIU Zheng-yu. Advanced detection of water-bearing geological structures in tunnels using 3D DC resistivity inversion tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1866-1876.
    [7]WANG Kui-hua, WANG Ning, LIU Kai, WU Wen-bing. Longitudinal vibration of piles in 3D axisymmetric soil based on fictitious soil pile method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 885-889.
    [8]LU Yanmei, CHEN Jiansheng, DONG Haizhou, CHEN Liang. Laplace solution for heat transfer model of dam leakage[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 274-278.
    [9]A polynomial regressive inverse method to determine rheologic parameters of soft soil[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 365-367.
    [10]Li Ning, Li Yonggang, Zhang Ping. A simulating inversion method for an opening in discrete rock masses[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 170-173.
  • Cited by

    Periodical cited type(15)

    1. 杨舒涵,漆天奇,刘嘉英. 堆石料宏细观力学特性离散元分析. 人民长江. 2024(02): 203-210 .
    2. LI Shuai,GU Tianfeng,WANG Jiading,WANG Fei,LI Pu. Regulation effect of the grille spacing of a funnel-type grating water–sediment separation structure on the debris flow performance. Journal of Mountain Science. 2024(07): 2283-2304 .
    3. 王辉,钮新强,马刚,周伟. 干湿循环作用下堆石料宏细观力学特性的离散元模拟研究. 岩土力学. 2024(S1): 665-676 .
    4. 张江浩,冀鸿兰,杨震,李志军,刘晓民. 冻融循环下黄河堤岸砂质壤土宏细观破坏过程. 河海大学学报(自然科学版). 2024(06): 69-80 .
    5. 黄志刚,王轩,傅力,童立红. 加载速率和摩擦系数对颗粒材料系统剪切强度的影响研究. 力学季刊. 2024(04): 1032-1042 .
    6. 栗培龙,宿金菲,孙胜飞,王霄,马云飞. 多级矿料-沥青体系的颗粒特性、界面效应及迁移行为研究进展. 中国公路学报. 2023(01): 1-15 .
    7. 王伟,张志义,赵博. 煤矿井下风积沙箱式充填体侧向约束机理数值研究. 新疆大学学报(自然科学版)(中英文). 2023(03): 367-372 .
    8. 肖浩波,漆天奇,杨舒涵,周伟,刘嘉英. 椭球颗粒体系宏、细观特性的3维离散元分析. 工程科学与技术. 2023(06): 78-86 .
    9. 张革,曹玲,王成汤. 考虑各向异性影响的冻土修正线性黏结接触模型开发及应用. 岩土力学. 2023(S1): 645-654 .
    10. 郑虎,牛文清,毛无卫,黄雨. 颗粒材料双轴压缩试验的光弹测试. 同济大学学报(自然科学版). 2023(11): 1719-1724 .
    11. 王怡舒,刘斯宏,沈超敏,陈静涛. 接触摩擦对颗粒材料宏细观力学特征和能量演变规律的影响. 岩石力学与工程学报. 2022(02): 412-422 .
    12. 雷云,刘源,徐同桐,何子苗. 粒间摩擦和层厚比对二维分层颗粒系统底部响应的影响. 科学技术与工程. 2022(07): 2585-2591 .
    13. 刘嘉英,周伟,姬翔,魏纲,袁思莹,李欣骏. 基于细观拓扑结构演化的颗粒材料剪胀性分析. 力学学报. 2022(03): 707-718 .
    14. 蒋明杰,栗书亚,吉恩跃,张小勇,朱俊高. 粗粒土大型静止侧压力系数测定试验的颗粒流模拟. 科学技术与工程. 2021(25): 10867-10872 .
    15. 崔溦,魏杰,王超,王枭华,张社荣. 考虑颗粒级配和形态的颗粒柱坍塌特性离散元模拟. 岩土工程学报. 2021(12): 2230-2239 . 本站查看

    Other cited types(14)

Catalog

    Article views PDF downloads Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return