• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
WANG Bing-hui, WANG Zhi-hua, JIANG Peng-ming, ZHOU Ai-zhao. Electrical resistivity characteristics of saturated sand with varied porosities[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1739-1745. DOI: 10.11779/CJGE201709024
Citation: WANG Bing-hui, WANG Zhi-hua, JIANG Peng-ming, ZHOU Ai-zhao. Electrical resistivity characteristics of saturated sand with varied porosities[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1739-1745. DOI: 10.11779/CJGE201709024

Electrical resistivity characteristics of saturated sand with varied porosities

More Information
  • Received Date: June 01, 2016
  • Published Date: September 24, 2017
  • In order to investigate the temporal and spatial characteristics of physical properties of sand, the studies on electrical resistivity properties of saturated sand with varied porosities should be carried out primarily. Firstly, the resistivity measurement devices are developed by using the two-electrode AC electrical method, and the reliability of the devices is verified by considering the effects of electrifying time and contact resistance. Using the devices, the electrical resistivities of sand under varied effects of resistivity of pore water, saturation and porosity of sand are studied. And the resistivity of saturated sand varing with the porosity is highlighted. The results show that the effect of conduction history can be ignored using the devices, and that the contact resistance between electrode and soil is remarkably related to the saturation of sand. The influences of the resistivity of water, saturation and porosity of sand on the resistivity of sand have a decreasing order. There is a remarkable power function between the resistivity of saturated sand and its porosity. Their influence sequences on the resistance of sand are sorted by the noise-signal ratio and range analysis.
  • [1]
    李广信. 论土骨架与渗透力[J]. 岩土工程学报. 2016, 38(8): 1522-1528. (LI Guang-xing. On soil skeleton and seepage force[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1522-1528. (in Chinese))
    [2]
    DESRUES J, CHAMBON R, MOKNI M, et al. Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography[J]. Géotechnique, 1996, 46(3): 529-546.
    [3]
    DESRUES J, VIGGIANI G. Strain localization in sand: an overview of the experimental results obtained in grenoble using stereophotogrammetry[J]. Numerical Methods & Algorithms, 2004, 28(4): 279-321.
    [4]
    FROST J D, JANG D. Evolution of sand microstructure during shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(2): 116-130.
    [5]
    刘松玉, 查甫生, 于小军. 土的电阻率室内测试技术研究[J]. 工程地质学报, 2006, 14(2): 216-222. (LIU Song-yu, ZHA Fu-sheng, YU Xiao-jun. Laboratory measurement techniques of the electrical resistivity of soils[J]. Journal of Engineering Geology, 2006, 14(2): 216-222. (in Chinese))
    [6]
    ARCHIE G E. The electric resistivity logs as an aid in determining some reservoir characteristics[J]. American Institute of Mining, Metallurgical and Petroleum Engineers, 1942, 146: 54-61.
    [7]
    ARULANANDAN K, MURALEETHARAN K. Level ground soil‐liquefaction analysis using in situ properties: i[J]. Journal of Geotechnical Engineering, 1988, 114(7): 753-770.
    [8]
    ARULANANDAN K, MURALEETHARAN K. Level ground soil‐liquefaction analysis using in situ properties: ii[J]. Journal of Geotechnical Engineering, 1988, 114(7): 771-790.
    [9]
    THEVANAYAGAM S. Electrical response of two-phase soil. Theory and applications[J]. Journal of Geotechnical Engineering, 1993, 119(8): 1250-1275.
    [10]
    SAMOUËLIAN A, COUSIN I, TABBAGH A, et al. Electrical resistivity survey in soil science: a review[J]. Soil and Tillage Research, 2005, 83(2): 173-193.
    [11]
    SON Y, OH M, LEE S. Estimation of soil weathering degree using electrical resistivity[J]. Environmental Earth Sciences, 2010, 59(6): 1319-1326.
    [12]
    DASH S R, SURESH KUMAR N, BHATTACHARYA S, et al. Characterisation of ert as a new non-invasive monitoring method of liquefaction process[C]// Joint Conference Proceedings: 7th International Conference on Urban Earthquake Engineering (7CUEE) & 5th International Conference on Earthquake Engineering (5ICEE). Tokyo, 2010.
    [13]
    JINGUUJI M, TOPRAK S, KUNIMATSU S. Visualization technique for liquefaction process in chamber experiments by using electrical resistivity monitoring[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(3): 191-199.
    [14]
    FRIEDMAN S P. Soil properties influencing apparent electrical conductivity: a review[J]. Computers and Electronics in Agriculture, 2005, 46: 45-70.
    [15]
    刘国华, 王振宇, 黄建平. 土的电阻率特性及其工程应用研究[J]. 岩土工程学报, 2004, 26(1): 83-87. (LIU Guo-hua, WANG Zhen-yu, HUANG Jian-ping. Research on electrical resistivity feature of soil and its application[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 83-87. (in Chinese))
    [16]
    周 蜜, 王建国, 黄松波, 等. 土壤电阻率测量影响因素的试验研究[J]. 岩土力学, 2011, 32(11): 3269-3275. (ZHOU Mi, WANG Jian-guo, HUANG Song-bo, et al. Experimental investigation on influencing factors in soil resistivity measurement[J]. Rock and Soil Mechanics, 2011, 32(11): 3269-3275. (in Chinese))
    [17]
    蔡国军, 张 涛, 刘松玉, 等. 江苏海相黏土电阻率与岩土特性参数间相关性研究[J]. 岩土工程学报, 2013, 35(8): 1470-1477. (CAI Guo-jun, ZHANG Tao, LIU Song-yu, et al. Relationship between electrical resistivity and geotechnical characteristic parameters for Jiangsu marine clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1470-1477. (in Chinese))
    [18]
    GUOJUN C, SONGYU L, PUPPALA A J. Liquefaction assessments using seismic piezocone penetration (scptu) test investigations in tangshan region in china[J]. Soil Dynamics and Earthquake Engineering, 2012, 41: 141-150.
    [19]
    CAI G J, LIU S Y, TONG L H. Field evaluation of deformation characteristics of a lacustrine clay deposit using seismic piezocone tests[J]. Engineering Geology, 2010, 116(3): 251-260.
    [20]
    CAI G J, LIU S Y, TONG L H, et al. Assessment of direct cpt and cptu methods for predicting the ultimate bearing capacity of single piles[J]. Engineering Geology, 2009, 104(3): 211-222.
    [21]
    蔡国军, 刘松玉, 邵光辉, 等. 基于电阻率静力触探的海相黏土成因特性分析[J]. 岩土工程学报, 2008, 30(4): 529-535. (CAI Guo-jun, LIU Song-yu, SHAO Guang-hui, et al. Analysis of formation characteristics of marine clay based on resistivity cone penetration test(RCPT)[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 529-535. (in Chinese))
    [22]
    蔡国军, 刘松玉, 童立元, 等. 多功能孔压静力触探(CPTU)试验研究[J]. 工程勘察, 2007(3): 10-15. (CAI Guo-jun, LIU Song-yu, TONG Li-yuan, et al. Research on the versatile piezocone penetration test (CPTU)[J]. Geotechnical Investigation & Surveying, 2007(3): 10-15. (in Chinese))
    [23]
    蔡国军, 刘松玉, 童立元, 等. 电阻率静力触探测试技术与分析[J]. 岩石力学与工程学报, 2007, 26(增刊1): 3127-3133. (CAI Guo-jun, LIU Song-yu, TONG Li-yuan, et al. Resistivity cone penetration test technique and data interpretation[J]. Chin J Rock Mech Eng, 2007, 26(S1): 3127-3133.(in Chinese))
    [24]
    CAI G J, LIU S Y, PUPPALA A J. Comparison of cpt charts for soil classification using pcpt data: example from clay deposits in Jiangsu province, China[J]. Engineering Geology, 2011, 121(1): 89-96.
    [25]
    查甫生, 刘松玉, 杜延军, 等. 击实黄土的电阻率特性试验研究[J]. 岩土力学, 2011, 32(增刊2): 155-158. (ZHA Fu-sheng, LIU Song-yu, DU Yan-jun, et al. Characteristics of electrical resistivity of compacted loess[J]. Rock and Soil Mechanics, 2011, 32(S2): 155-158. (in Chinese))
    [26]
    查甫生, 刘松玉, 杜延军, 等. 基于电阻率的非饱和土基质吸力预测[J]. 岩土力学, 2010, 31 (3): 1003-1008. (ZHA Fu-sheng, LIU Song-yu, DU Yan-jun, et al. Prediction of matric suction of unsaturated soil based on electrical resistivity[J]. Rock and Soil Mechanics, 2010, 31(3): 1003-1008. (in Chinese))
    [27]
    查甫生, 刘松玉, 杜延军, 等. 电阻率法评价膨胀土改良的物化过程[J]. 岩土力学, 2009, 30(6): 1711-1718. (ZHA Fu-sheng, LIU Song-yu, DU Yan-jun, et al. Evaluation of physicochemical process in stabilized expansive soils using electrical resistivity method[J]. Rock and Soil Mechanics, 2009, 30(6): 1711-1718. (in Chinese))
    [28]
    查甫生, 刘松玉. 土的电阻率理论及其应用探讨[J]. 工程勘察, 2006(5): 10-15. (CHA Fu-sheng, LIU Song-yu. Resistivity theory of soil and its applications[J]. Journal of Geotechnical Investigation & Surveying, 2006(5): 10-15. (in Chinese))
    [29]
    程志平. 电法勘探教程[M]. 北京: 冶金工业出版社, 2007. (CHEN Zhi-ping. Exploration using electrical method[M]. Beijing: Metallurgical Industry Press, 2007. (in Chinese))
  • Related Articles

    [1]HE Hao-song, TENG Ji-dong, ZHANG Sheng, SHENG Dai-chao. Rationality of frost susceptibility of soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 224-234. DOI: 10.11779/CJGE202202003
    [2]LIN Xin, TAN Xiao-hui, DONG Xiao-le, DU Lin-feng, ZHA Fu-sheng, XU Long. System reliability sensitivity analysis method based on sequential compounding method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 98-106. DOI: 10.11779/CJGE202201009
    [3]JIANG An-nan, TA La, LI Peng. Numerical simulation and sensitivity analysis for construction of metro station near bridge pile[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 1151-1154.
    [4]WANG Hui, CHEN Wei-zhong. Sensitivity analysis of mechanical parameters to deformation of surrounding rock in Galongla tunnel[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1548-1553.
    [5]Sensitivity analysis of parameters of Rankine's earth pressure with inclined surface considering intermediate principal stress[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10).
    [6]Sensitivity analysis of parameters for bolts in rock slopes under earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2010, 28(9).
    [7]ZHANG Yichen, LI Xin, ZHANG Xifa, ZHANG Dongqing. Research on frost heave susceptibility and classification of coarse grained soil of highway subgrade in seasonally frozen ground region[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1522-1526.
    [8]WU Qingbai, ZHU Yuanlin, LIU Yongzhi. Assessment model of thermal thawing sensibility of permafrost under engineering activity[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 731-735.
    [9]Xiong Qidong, Gao Dazhao. Reliability analysis of bearing capacity of foundation determined by Hansen formula[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 79-81.
    [10]Chen Xiaobai, Wang Yaqing, He Ping. Frost Susceptibility of Sandy Gravel during Freezing[J]. Chinese Journal of Geotechnical Engineering, 1988, 10(3): 23-29.
  • Cited by

    Periodical cited type(9)

    1. 梁喜凤,史延楠,秦叶波,姚莹,张慧,王永维. 不同含水率与静置时间下滩涂土壤流变特性试验. 农业工程学报. 2024(01): 182-190 .
    2. 陈涛. 充分利用海洋环境提升声呐装备性能的研究. 数字海洋与水下攻防. 2024(02): 156-163 .
    3. 张少雄,宋涛,郝鑫平,张力霆,陈剑刚. 赤泥浆体流变特性和流变模型适用性研究. 三峡大学学报(自然科学版). 2023(01): 48-53 .
    4. 梁志超,张爱军,任文渊,胡海军,王毓国,李双村. 不同含水率高易溶盐含量的伊犁黄土流变特性. 农业工程学报. 2023(05): 90-99 .
    5. 刘杰锋,李飒,段贵娟,王奕霖. 稳态剪切条件下中国南海软黏土的相态转变特性及流变模型. 岩土力学. 2023(S1): 341-349 .
    6. 张博珊,王辉,陈熹. 一种考虑固相浓度作用的改进泥浆流变模型. 土木工程学报. 2023(S1): 134-141 .
    7. 李家平,朱克超,周旋,陈衍力,李昱洋,马雯波. 深海富稀土沉积物的流变特性研究. 岩土力学. 2022(S1): 348-356 .
    8. 刘晓磊,陈安铎,张红,陆杨,马路宽,贾永刚. 黄河水下三角洲高浓度黏性泥沙流变特性及其影响因素. 海洋学报. 2021(05): 127-134 .
    9. 程升,朱超祁,单红仙,刘晓磊,贾永刚. 基于离散元的南海软黏土剪切变形模拟. 科学技术与工程. 2020(09): 3707-3714 .

    Other cited types(10)

Catalog

    Article views (576) PDF downloads (366) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return