• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Li-qin, LU Zhong-gang, SHAO Sheng-jun. New nonlinear stress-strain model for loess and its comparative research[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1724-1730. DOI: 10.11779/CJGE201709022
Citation: WANG Li-qin, LU Zhong-gang, SHAO Sheng-jun. New nonlinear stress-strain model for loess and its comparative research[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1724-1730. DOI: 10.11779/CJGE201709022

New nonlinear stress-strain model for loess and its comparative research

More Information
  • Received Date: July 03, 2016
  • Published Date: September 24, 2017
  • At present, the stress-strain curve of loess can only be described by using different mathematical models according to its morphological type. To achieve a unified description of the stress-strain mathematical model, a new nonlinear model is proposed, and the method for determining each parameter is also given. The various types of stress-strain curves of structural loess which are obtained from conventional triaxial tests are simulated by applying the new model and the current main nonlinear models (Duncan-Chang hyperbolic model, exponential model and model of camelback curve), and then they are compared with the measured stress-strain data points. The result shows that the expression of the new model can make a more accurate description for the softening stress-strain curve than that of the hump curve. Similarly, the new model describes the hardening stress-strain curve more accurately in comparison with the Duncan-Chang hyperbolic model and the exponential model, which indicates that the new nonlinear model can describe the strong hardening stress-strain curve and the weak hardening curve, and can also describe the strong softening curve and the weak softening curve. Meanwhile, based on the description of stress-strain curves of the classic example by the new model, it is shown that the new model has excellent adaptability. The proposed model provides a unified mathematical model for the stress-strain curves of different shapes.
  • [1]
    殷德顺, 王保田. 负乘幂本构模型的切线模量[J]. 岩土力学, 2009, 30(7): 2168-2173. (YIN De-shun, WANG Bao-tian. Tangent modulus of negative-power constitutive model[J]. Rock and Soil Mechanics, 2009, 30(7): 2168-2173. (in Chinese))
    [2]
    陈云敏, 高 登, 朱 斌. 城市固体废弃物的复合指数应力-应变模型及其应用[J]. 岩土工程学报, 2009, 31(7): 1020-1029. (CHEN Yun-min, GAO Deng, ZHU Bin. Composite exponential stress-strain model of municipal solidwaste and its application[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1020-1029. (in Chinese))
    [3]
    王 伟, 卢廷浩, 周干武. 黏土非线性模型的改进切线模量[J]. 岩土工程学报, 2007, 29(3): 458-462. (WANG Wei, LU Ting-hao, ZHOU Gan-wu. Improved tangent modulus of nonlinear soil model[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 458-462. (in Chinese))
    [4]
    何昌荣, 杨桂芳. 邓肯-张模型参数变化对计算结果的影响[J]. 岩土工程学报, 2002, 24(2): 170-174. (HE Chang-rong, YANG Gui-fang. Effects of parameters of Duncan-Chang model on calculated results[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 170-174. (in Chinese))
    [5]
    李广信. 关于土的本构模型研究的若干问题[J]. 岩土工程学报, 2009, 31(10): 1636-1641. (LI Guang-xin. Some problems in researches on constitutive model of soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1636-1641. (in Chinese))
    [6]
    陈正汉, 周海清, FREDLUND D G. 非饱和土的非线性模型及其应用[J]. 岩土工程学报, 1999, 21(5): 603-608. (CHEN Zheng-han, ZHOU Hai-qing, FREDLUND D G. Nonlinear model for unsaturated soils and its application[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 603-608. (in Chinese))
    [7]
    刘祖典, 李 靖, 郭增玉, 等. 陕西关中黄土变形特性和变形参数的探讨[J]. 岩土工程学报, 1984, 6(3): 24-34. (LIU Zu-dian, LI Jing, GUO Zeng-yu, et al. Deformation behaviours and deformation parameter of loess in Shanxi district[J]. Chinese Journal of Geotechnical Engineering, 1984, 6(3): 24-34. (in Chinese))
    [8]
    DUNCAN J M, CHANG C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(5): 1629-1653.
    [9]
    GITAU A N, GUMBE L O, BIAMAH E K. Influence of soil water on stress-strain behaviour of a compacting soil in semi-arid Kenya[J]. Soil & Tillage Research, 2006, 89(2): 144-154.
    [10]
    AL-SHAYEA N, ABDULJAUWAD S, BASHIR R, et al. Determination of parameters for a hyperbolic model of soils[J]. Geotechnical Engineering, 2003, 156(2): 105-117.
    [11]
    LEE K H, JU Y T, SHIN D S, et al. Development of a modified Duncan-Chang model for soils[C]// BLOSS D M, eds. Proceedings of the 10th International Symposium on Numerical Models in Geomechanics. Leiden(Netherlands): Taylor and Francis, 2007: 93-98.
    [12]
    孔德志, 朱俊高. 邓肯-张模型几种改进方法的比较[J]. 岩土力学, 2004, 25(6): 971-974. (KONG De-zhi, ZHU Jun-gao. Comparison of several methods for improving Duncan-Chang model[J]. Rock and Soil Mechanics, 2004, 25(6): 971-974. (in Chinese))
    [13]
    章峻豪, 陈正汉, 赵 娜, 等. 非饱和土的新非线性模型及其应用[J]. 岩土力学, 2016, 37(3): 616-624. (ZHANG Jun-hao, CHEN Zheng-han, ZHAO Na, et al. A new nonlinear model of unsaturated soils and its application[J]. Rock and Soil Mechanics, 2016, 37(3): 616-624. (in Chinese))
    [14]
    黄文熙. 土的弹塑性应力-应变模型理论[J]. 岩土力学, 1979, 1(1): 1-20. (HUANG Wen-xi. The elastoplastic stress strain model theory for soil[J]. Rock and Soil Mechanics, 1979, 1(1): 1-20. (in Chinese))
    [15]
    沈珠江. 考虑剪胀性的土和石料的非线性应力应变模式[J]. 水利水运科学研究, 1986(4): 1-14. (SHENG Zhu-jiang. A nonlinear dilatant stress-strain model for soils and rock materials[J]. Journal of Nanjing Hydraulic Research Institute, 1986(4): 1-14. (in Chinese))
    [16]
    王 伟, 宋新江, 凌 华, 等. 滨海相软土应力-应变曲线复合指数-双曲线模型[J]. 岩土工程学报, 2010, 32(9): 1455-1459. (WANG Wei, SONG Xin-jiang, LING Hua, et al. Composite exponential-hyperbolic model for stress-strain curve of seashore soft soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1455-1459. (in Chinese))
    [17]
    何利军, 孔令伟. 土的应力-应变关系的一种描述模式[J]. 工程地质学报, 2010, 18(6): 900-905. (HE Li-jun, KONG Ling-wei. Uniform expression of stress-strain relationship of soils[J]. Journal of Engineering Geology, 2010, 18(6): 900-905. (in Chinese))
    [18]
    陈 成, 周正明. 一个考虑剪胀性和应变软化的土体非线性弹性模型[J]. 岩土工程学报, 2013, 35(增刊1): 39-43. (CHEN Cheng, ZHOU Zheng-ming. Nonlinear elastic model for soils incorporating both dilatancy and strain softening[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 39-43. (in Chinese))
    [19]
    张 斌, 屈智炯. 考虑剪胀和软化特性的粗粒土应力-应变模型[J]. 岩土工程学报, 1991, 13(6): 64-69. (ZHANG Bin, QU Zhi-jiong. The stress-strain model of coarse-grained soil considering characteristics of dilation and softening[J]. Chinese Journal of Geotechnical Engineering, 1991, 13(6): 64-69. (in Chinese))
    [20]
    王海波, 徐 明, 宋二祥. 基于硬化土模型的小应变本构模型研究[J]. 岩土力学, 2011, 32(1): 39-43. (WANG Hai-bo, XU Ming, SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. Rock and Soil Mechanics, 2011, 32(1): 39-43.(in Chinese)
    [21]
    JARDINE R J. Some observations on the kinematic nature of soil stiffness[J]. Soils and Foundations, 1992, 32(2): 111-124.
  • Cited by

    Periodical cited type(12)

    1. 裘友强,张留俊,刘洋,刘军勇,尹利华. “双碳”背景下公路软土地基处理技术研究进展. 水利水电技术(中英文). 2025(01): 113-131 .
    2. 龙军,彭搏程. 基于桩周土围限失效的筋箍料粒桩复合地基承载力计算. 公路工程. 2025(01): 138-143 .
    3. 谭鑫,尹心,胡政博,裘钊辉,陈昌富. 筋箍碎石桩承载机制的三维离散-连续介质耦合数值模拟. 铁道学报. 2023(04): 139-147 .
    4. 王嘉鑫,纪明昌,郑俊杰,郑烨炜. 软土地基中包裹碎石桩地震动力响应数值模拟研究. 土木与环境工程学报(中英文). 2023(05): 58-65 .
    5. 郝耀虎,周杨,王闫超,刘少炜. 基于透明土技术的加筋碎石桩承载特性试验研究. 铁道科学与工程学报. 2023(12): 4582-4591 .
    6. 黄河,罗正东,李检保,罗彪. 竹筋格栅套筒加筋碎石桩承载力分析. 人民长江. 2022(06): 193-197 .
    7. 袁涌筌,赵明华,杨超炜,肖尧. 循环荷载下筋箍碎石桩复合地基动力特性数值分析. 湖南大学学报(自然科学版). 2022(11): 198-205 .
    8. 臧一平,刘聪. 考虑鼓胀和自重的散体材料桩复合地基承载力分析. 地基处理. 2021(06): 451-457 .
    9. 郑刚,周海祚. 复合地基极限承载力与稳定研究进展. 天津大学学报(自然科学与工程技术版). 2020(07): 661-673 .
    10. 李建喜,康超,李玉峰. 碎石桩处理软土地基的现状及趋势分析. 北方建筑. 2020(03): 60-63+67 .
    11. 邱梦瑶,陈树培,唐亮,凌贤长,张效禹,李雪伟,刘书幸. 加筋碎石桩复合饱和砂土地基抗液化性能评价方法. 地震研究. 2020(03): 554-562+603 .
    12. 姚志伟,张永艳. 筏板基础下碎石桩改良软土地基性能的数值研究. 河北工业科技. 2020(05): 359-365 .

    Other cited types(13)

Catalog

    Article views (340) PDF downloads (229) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return