• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FENG Wen-kai, YI Xiao-yu, GE Hua, WANG Qi, LIU Zhi-gang, ZHANG Guang-xin. In-situ borehole shear tests on cataclastic rock mass of Daguangbao landslide[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1718-1723. DOI: 10.11779/CJGE201709021
Citation: FENG Wen-kai, YI Xiao-yu, GE Hua, WANG Qi, LIU Zhi-gang, ZHANG Guang-xin. In-situ borehole shear tests on cataclastic rock mass of Daguangbao landslide[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1718-1723. DOI: 10.11779/CJGE201709021

In-situ borehole shear tests on cataclastic rock mass of Daguangbao landslide

More Information
  • Received Date: May 24, 2016
  • Published Date: September 24, 2017
  • Daguangbao landslide is the largest landslide triggered by the Wenchuan earthquake. The exposed sliding zone with a length of 1.8 km and highly ruptured rock mass is located at the south side of the landslide, which has attracted great attention across the world. To evaluate the strength parameters of cataclastic rock mass in the sliding zone accurately, a detailed field survey work is carried out on the basis of previous researches by using a France Phicometre dual-purpose geotechnical in-situ borehole shear tester to investigate the cataclastic rock mass in Daguangbao landslide slip zone. A comparative analysis among the test results, the values of Hoek-Brown strength criterion and the mechanical parameter values based on the engineering geologic analogy method is performed. Finally, the mechanical parameter values of the rock mass of the Daguangbao landslide of the south side are proposed: its cohesion is from 245 kPa to 480 kPa, and its internal friction angle is from 25.0°to 26.5°.
  • [1]
    殷跃平, 成余粮, 王 军, 等. 汶川地震触发大光包巨型滑坡遥感研究[J]. 工程地质学报, 2011, 19(5): 674-684. (YIN Yue-ping, CHENG Yu-liang, WANG Jun, et al. Remote sensing research on daguangbao gigantic rock-slide triggered by Wenchuan earthquake[J]. Journal of Engineering Geology, 2011, 19(5): 674-684. (in Chinese))
    [2]
    黄润秋, 裴向军, 李天斌. 汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J]. 工程地质学报, 2008, 16(6): 730-741. (HUANG Run-qiu, PEI Xiang-jun, LI Tian-bin. Basic characteristics and formation mechanism of the largest scale landslide at Dagungbao occurred during the Wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(6): 730-741. (in Chinese))
    [3]
    黄润秋, 裴向军, 张伟锋, 等. 再论大光包滑坡特征与形成机制[J]. 工程地质学报, 2009, 17(6): 725-736. (HUANG Run-qiu, PEI Xiang-jun, ZHANG Wei-feng, et al. Further examination on characteristics and formation mechanism of Daguangbao landslide[J]. Journal of Engineering Geology, 2009, 17(6): 725-736. (in Chinese))
    [4]
    许向宁, 李胜伟, 王小群, 等. 安县大光包滑坡形成机制与运动学特征讨论[J]. 工程地质学报, 2013, 21(2): 269-281. (XU Xiang-ning, LI Sheng-wei, WANG Xiao-qun, et al. Characteristics of formation mechanism and kinematics of Daguangbao landslide caused by Wenchuan earthquake[J]. Journal of Engineering Geology, 2013, 21(2): 269-281. (in Chinese))
    [5]
    马艳波. 强震条件下巨型滑坡滑带岩体损伤特性研究——以大光包滑坡为例[D]. 成都: 成都理工大学, 2012. (MA Yan-bo. Study on damage features of the rock mass in the sliding belt of the giant landslide under the strong earthquake—a case of Daguangbaolandslide[D]. Chengdu: Chengdu University of Technology, 2012. (in Chinese))
    [6]
    殷跃平, 王 猛, 李 滨, 等. 汶川地震大光包滑坡动力响应特征研究[J]. 岩石力学与工程学报, 2012, 31(10): 1969-1982. (YIN Yue-ping, WANG Meng, LI Bin, et al. Dynamic response characteristics of Daguangbao landslide triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering Geology, 2012, 31(10): 1969-1982. (in Chinese))
    [7]
    ZHANG Y, CHEN G, ZHENG L, et al. Effects of near-fault seismic loadings on run-out of large-scale landslide:a case study[J]. Engineering Geology, 2013, 166(8): 216-236.
    [8]
    黄润秋, 裴向军, 崔圣华. 大光包滑坡滑带岩体碎裂特征及其形成机制研究[J]. 岩石力学与工程学报, 2016, 35(1): 1-15. (HUANG Run-qin, PEI Xiang-jun, CUI Sheng-hua. Cataclastic characteristics and formation mechanism of rock mass in sliding zone of Daguangbao landslide[J]. Chinese Journal of Rock Mechanics and Engineering Geology, 2016, 35(1): 1-15. (in Chinese))
    [9]
    裴向军, 黄润秋, 崔圣华, 等. 大光包滑坡岩体碎裂特征及其工程地质意义[J]. 岩石力学与工程学报, 2015, 34(增刊): 3106-3115. (PEI Xiang-jun, HUANG Run-qiu, CUI Sheng-hua, et al. The rock mass cataclastic characteristics of daguangbao landslide and its engineering geological significance[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3106-3115. (in Chinese))
    [10]
    崔圣华. 强震巨型滑坡滑带碎裂岩体微细观分析及静动力破损机制研究[D]. 成都: 成都理工大学, 2012. (CUI Sheng-hua. Strong earthquake giant landslide slip zone cataclastic rock mass view of micro analysis and the static and dynamic damage mechanism research[D]. Chengdu: Chengdu University of Technology, 2012. (in Chinese))
    [11]
    HOEK E, DIEDERICHS M S. Empirical estimation of rock mass modulus[J]. International Journal of Rock Mechanics & Mining Sciences, 2006, 43: 203-215.
    [12]
    晏鄂川, 唐辉明. 工程岩体稳定性评价与利用[M]. 武汉:中国地质大学出版社, 2002: 1-15. (YAN E-chuan, TANG Hui-ming. Stability evaluation and utilization of engineering rock mass[M]. Wuhan: Publishing House of China University of Geosciences, 2002: 1-15. (in Chinese))
    [13]
    HOEK E, BROWN E T. Underground excavations in rock[M]. London: Institution of Mining and Metallurgy, 1980: 23-25.
    [14]
    HOEK E, CARRANZA T C, CORKUM B. Hoek-Brown failure criterion-2002 edition[C]// Proceedings of the Fifth North American Rock Mechanics Symposium. Toronto, 2002.
    [15]
    胡盛明, 胡修文. 基于量化的GSI系统和Hoek-Brown准则的岩体力学参数的估计[J]. 岩土力学, 2011, 32(3): 861-866. (HU Sheng-ming, HU Xiu-wen. Estimation of rock mass parameters based on quantitative GSI system and Hoek-Brown Criterion[J]. Rock and Soil Mechanics, 2011, 32(3): 861-865. (in Chinese))
    [16]
    王新刚, 胡 斌, 王家鼎, 等. 基于GSI的Hoek-Brown强度准则定量化研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 3805-3812. (WANG Xin-gang, HU Bin, WANG Jia-ding, et al. Quantitative study of Hoek-Brown strength criterion based on GSI[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3805-3812. (in Chinese))
    [17]
    朱 雷, 王小群. 大型岩质滑坡地震变形破坏过程物理试验与数值模拟研究[J]. 工程地质学报, 2013(2): 228-235. (ZHU Lei, WANG Xiao-qun. Physical modeling and numerical simulation of deformation and failure process of large rockslide in earthquake[J]. Journal of Engineering Geology, 2013(2): 228-235. (in Chinese))
  • Related Articles

    [1]WANG Weiyu, LEI Guohui, ZHAO Xin, DAI Chuanjie, GU Yuxi. Understanding governing equations for one-dimensional finite strain consolidation of saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 829-839. DOI: 10.11779/CJGE20240077
    [2]LIU Hua-xuan, LIU Dong-jia, LU Zhi-tang, TAO Jun, JIANG Jing. Numerical calculation of three-dimensional elastic wave equation of piles staggered grid finite difference using method with variable step lengths[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1754-1760. DOI: 10.11779/CJGE201409024
    [3]YAN Shu-wang, JIA Zhao-lin, GUO Bing-chuan, SUN Li-qiang. Consolidation characteristics of fillings by variable coefficients finite difference method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 496-500.
    [4]LIANG Fa-yun, LI Yan-chu, HUANG Mao-song. Simplified method for laterally loaded piles based on Pasternak double-parameter spring model for foundations[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 300-304.
    [5]ZHANG Ming, ZHAO You-ming, LIU Guo-nan, HU Rong-hua. Finite difference solution to equation for large-strain consolidation of double-layered vertical drain ground[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1666-1674.
    [6]Design method of micropile group for soil slope stabilization based on ultimate resistance of analysis[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1671-1677.
    [7]Coupling method of two-dimensional discontinuum-continuum based on contact between particle and element[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10).
    [8]A solution of Gibson’s governing equation of one-dimensional consolidation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5).
    [9]ZHANG Hua, LU Yang. Numerical method for retaining structures based on coupled finite difference method and discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1402-1407.
    [10]DAI Zihang, CHEN Linjing. Two numerical solutions of laterally loaded piles installed in multi-layered soils by m method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 690-696.

Catalog

    Article views (378) PDF downloads (266) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return