• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Song, WU Jun-hua, HUANG Jian-feng. Effects of pore water surface tension and contact angle on dry-shrinkage cracking of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1645-1652. DOI: 10.11779/CJGE201709012
Citation: YANG Song, WU Jun-hua, HUANG Jian-feng. Effects of pore water surface tension and contact angle on dry-shrinkage cracking of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1645-1652. DOI: 10.11779/CJGE201709012

Effects of pore water surface tension and contact angle on dry-shrinkage cracking of expansive soils

More Information
  • Received Date: June 16, 2016
  • Published Date: September 24, 2017
  • The surface tensions of water, alcoholic solution and suds (surfactant) are measured by using the pendent drop method, and then their values are compared. The contact angle of soil samples is measured by means of the sessile drop method, and the samples are mixed with octadecylamine. Based on the results, the tests on dry-shrinkage cracking are conducted on expansive soil samples with different pore water surface tensions and contact angles. The results indicate that the surface tension and contact angle have a major impact on the dry-shrinkage cracking of expansive soils. The soil samples with a less surface tension have a less final crack ratio. In the phase of cracking development, the samples with a lower surface tension have a higher crack ratio during the same amount of drying time. Increasing the contact angle of soil particles and pore water can hold back the dry-shrinkage cracking in expansive soils. For the soil samples during the same drying time, a larger contact angle will cause a smaller crack ratio. Both decreasing the surface tension and increasing the contact angle lead to the increase of the radius of curvature in pore fluid, and the matric suction thus decreases. Meniscus may become convex because of the larger contact angle, and the matric suction will disappear in this situation.
  • [1]
    殷宗泽, 徐 彬. 反映裂隙影响的膨胀土边坡稳定性分析[J]. 岩土工程学报, 2011, 33(3): 454-459. (YIN Zong-ze, XU Bin. Slope stability of expansive soil under fissure influence[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 454-459. (in Chinese))
    [2]
    陈铁林, 邓 刚, 陈生水, 等. 裂隙对非饱和土边坡稳定性的影响[J]. 岩土工程学报, 2006, 28(2): 210-215. (CHEN Tie-lin, DENG Gang, CHEN Sheng-shui, et al. Effects of fissures on stability of unsaturated soil slope[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 210-215. (in Chinese))
    [3]
    孔令伟, 郭爱国, 赵颖文, 等. 荆门膨胀土的水稳定性及其力学效应[J]. 岩土工程学报, 2004, 26(6): 727-732. (KONG Ling-wei, GUO Ai-guo, ZHAO Ying-wen, et al. Water stability of Xiangjing expansive soils and their mechanial effect[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 727-732. (in Chinese))
    [4]
    ZHANG Z B, PENG X, ZHOU H, et al. Characterizing preferential flow in cracked paddy soils using computed tomography and breakthrough curve[J]. Soil & Tillage Research, 2015, 146: 53-65.
    [5]
    JARVIS N J. A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality[J]. European Journal of Soil Science, 2007, 58(3): 523-546.
    [6]
    许锡昌, 周 伟, 陈善雄. 南阳重塑中膨胀土脱湿全过程裂隙开裂特征及影响因素分析[J]. 岩土力学, 2015, 36(9): 2569-2575. (XU Xi-chang, ZHOU Wei, CHEN Shan-xiong. Study of cracking characteristics and influencing factors for remolded Nanyang expansive soil in dehydration process[J]. Rock and Soil Mechanics, 2015, 36(9): 2569-2575. (in Chinese))
    [7]
    唐朝生, 崔玉军, TANG Anh-minh, 等. 土体干燥过程中的体积收缩变形特征[J]. 岩土工程学报, 2011, 33(8): 1271-1279. (TANG Chao-sheng, CUI Yu-jun, TANG Anh-Minh, et al. Volumetric shrinkage characteristics of soil during drying[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1271-1279. (in Chinese))
    [8]
    刘 平, 张虎元, 陈 毅, 等. 土的干缩开裂研究进展[J]. 地下空间与工程学报, 2015, 11(增刊1): 352-358. (LIU Ping, ZHANG Hu-yuan, CHEN Yi, et al. Review on disiccation cracking of clay soils[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(S1): 352-358. (in Chinese))
    [9]
    李锦辉, 郭凌波, 张利民. 考虑裂隙动态变化时裂隙土土水特征曲线的预测方法研究[J]. 岩石力学与工程学报, 2013, 32(6): 1288-1296. (LI Jin-hui, GUO Ling-bo, ZHANG Li-min. Prediction of SWCC for unsaturated cracked soil considering development process of cracks[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6): 1288-1296. (in Chinese))
    [10]
    李培勇, 杨 庆, 栾茂田, 等. 非饱和膨胀土裂隙开展深度影响因素研究[J]. 岩石力学与工程学报, 2008, 27(增刊1): 2967-2972. (LI Pei-yong, YANG Qing, LUAN Mao-tian, et al. Research on influential factors of crack propagation depth of unsaturated expansive soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S1): 2967-2972. (in Chinese))
    [11]
    FREDLUND D G, MORGENSTERN N R. Stress state variables for unsaturated soils[J]. Journal of Geotechnical Engineering Division, 1977, 103: 447-466.
    [12]
    赵亚溥. 表面与界面物理力学[M]. 北京: 科学出版社, 2012. (ZHAO Ya-pu. Surface and interface physical mechanics[M]. Beijing: Science Press, 2012. (in Chinese))
    [13]
    张 昭, 刘奉银, 张国平, 等. 不等径湿颗粒与液桥相互作用的微观水力特性[J]. 水利学报, 2013, 44(7): 810-817. (ZHANG Zhao, LIU Feng-yin, ZHANG Guo-ping, et al. Microscopic hydraulic behavior from the interactions between uneven-sized wet particles and liquid bridge[J]. Journal of Hydraulic Engineering, 2013, 44(7): 810-817. (in Chinese))
    [14]
    贾其军, 赵成刚, 韩子东. 低饱和度非饱和土的抗剪强度理论及其应用[J]. 岩土力学, 2005, 26(4): 580-585. (JIA Qi-jun, ZHAO Cheng-gang, HAN Zi-dong. Study on shear strength of the unsaturated soils in pendular state and its application[J]. Rock and Soil Mechanics, 2005, 26(4): 580-585. (in Chinese))
    [15]
    王保田, 任 骜, 张福海, 等. 使用CTMAB改良剂改良天然膨胀土的试验研究[J]. 岩土力学, 2009, 30(增刊2): 39-42. (WANG Bao-tian, REN Ao, ZHANG Fu-hai, et al. Experimental research on stabilizing expansive soil by CTMAB[J]. Rock and Soil Mechanics, 2009, 30(S2): 39-42. (in Chinese))
    [16]
    LEHRSCH G A, SOJKA R E, KOEHN A C. Surfactant effects on soil aggregate tensile strength[J]. Geoderma, 2012, 6(189/190): 199-206.
    [17]
    MÜLLER K, DEURER M. Review of the remediation strategies for soil water repellency[J]. Agriculture Ecosystems & Environment, 2011, 144(1): 208-221.
    [18]
    成 娟, 李 玲, 刘 科. 液体表面张力系数与浓度的关系实验研究[J]. 中国测试, 2014, 40(3): 32-34. (CHENG Juan, LI Ling, LIU Ke. Study on the relationship between liquid surface tension and concentration[J]. China Measurement & Test, 2014, 40(3): 32-34. (in Chinese))
    [19]
    葛 勇, 常传利, 杨文萃, 等. 常用无机盐对溶液表面张力及混凝土性能的影响[J]. 混凝土, 2007(6): 7-9. (GE Yong, CHANG Chuan-li, YANG Wen-cui, et al. Effect of organic salts on surface tension of solutions and properties of concrete[J]. Concrete, 2007(6): 7-9. (in Chinese))
    [20]
    商艳玲, 李 毅, 朱德兰. 再生水灌溉对土壤斥水性的影响[J]. 农业工程学报, 2012, 28(21): 89-97. (SHANG Yan-ling, LI Yi, ZHU De-lan. Effects of reclaimed water irrigation on soil water repellency[J]. Transactions of the CSAE, 2012, 28(21): 89-97. (in Chinese))
    [21]
    DIEHL D. Soil water repellency: dynamics of heterogeneous surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 432: 8-18.
    [22]
    杨 松, 龚爱民, 吴珺华, 等. 接触角对非饱和土中基质吸力的影响[J]. 岩土力学, 2015, 36(3): 674-678. (YANG Song, GONG Ai-min, WU Jun-hua, et al. Effect of contact angle on matric suction of unsaturated soil[J]. Rock and Soil Mechanics, 2015, 36(3): 674-678. (in Chinese))
    [23]
    高树棠, 张启桓. 应用微悬滴法测定低界面张力[J]. 化学通报, 1983(6): 27-33. (GAO Shu-tang, ZHANG Qi-huan. Measurement of low surface tension using pendant drop method[J]. Chemistry, 1983(6): 27-33. (in Chinese))
    [24]
    RAMIREZ-FLORES J C, BACHMANN J, MARMUR A. Direct determination of contact angles of model soils in comparison with wettability characterization by capillary rise[J]. Journal of Hydrology, 2010, 382(1): 10-19.
    [25]
    HAJNOS M, CALKA A, JOZEFACIUK G. Wettability of mineral soils[J]. Geoderma, 2013, 206(9): 63-69.
    [26]
    栾茂田, 李顺群, 杨 庆. 非饱和土的基质吸力和张力吸力[J]. 岩土工程学报, 2006, 28(7): 863-868. (LUAN Mao-tian, LI Shun-qun, YANG Qing. Matric suction and tension suction of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 863-868. (in Chinese))
    [27]
    SHIRTCLIFFE N J, MCHALE G, NEWTON M I, et al. Critical conditions for the wetting of soils[J]. Applied Physics Letters, 2006, 89(9): 094101.
    [28]
    CHAU H W, BISWAS A, VUJANOVIC V, et al. Relationship between the severity, persistence of soil water repellency and the critical soil water content in water repellent soils[J]. Geoderma, 2014, 2(221/222): 113-120.
    [29]
    杨 松, 吴珺华, 董红艳,等. 砂土和黏土的颗粒差异对土壤斥水性的影响[J]. 土壤学报, 2016, 53(2): 145-150. (YANG Song, WU Jun-hua, DONG Hong-yan, et al. Soil water repellency of sands and clay as affected by particle size[J]. Acta Pedologica Sinica, 2016, 53(2): 145-150. (in Chinese))
    [30]
    张 鑫, 孙树林, 魏永耀,等. 掺绿砂改良膨胀土室内试验研究[J]. 岩土力学, 2012(增刊2): 209-212. (ZHANG Xin, SUN Shu-lin, WEI Yong-yao, et al. Laboratory test study of properties of expansive soil improved by waste foundry sand[J]. Rock and Soil Mechanics, 2012(S2): 209-212. (in Chinese))
    [31]
    孙树林, 唐 俊, 郑青海, 等. 掺高炉水渣膨胀土的室内改良试验研究[J]. 岩土力学, 2012, 33(7): 1940-1944. (SUN Shu-lin, TANG Jun, ZHENG Qing-hai, et al. Experimental study of expansive soil improved with granulated blast furnace slay[J]. Rock and Soil Mechanics, 2012, 33(7): 1940-1944. (in Chinese))
    [32]
    刘清秉, 项 伟, 张伟锋, 等. 离子土壤固化剂改性膨胀土的试验研究[J]. 岩土力学, 2009, 30(8): 2286-2290. (LIU Qing-bing, XIANG Wei, ZHANG Wei-feng, et al. Experimental study of ionic soil stabilizer-improves expansive soil[J]. Rock and Soil Mechanics, 2009, 30(8): 2286-2290. (in Chinese))
  • Cited by

    Periodical cited type(4)

    1. 冉志红,董国华,杨子富,林帆. 基于经验频率分布的偏态概率模型可靠度计算方法研究. 四川建筑科学研究. 2024(01): 52-59 .
    2. 易顺,潘家军,王艳丽,徐晗,白强强,杨志勇. 基坑地表沉降的偏态分布函数应用. 长江科学院院报. 2024(08): 135-141+179 .
    3. 周勇,王延凯,王正振,王宁. 考虑局部超载下的桩锚支护结构变形分析. 科学技术与工程. 2021(14): 5943-5950 .
    4. 赵平,韩治勇. 深基坑开挖引起的地表竖向变形分析. 安徽科技学院学报. 2021(06): 112-118 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return