• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Fang-cheng, WU Meng-tao, CHEN Ju-long, ZHANG Yun-fei, ZHENG Yu-feng. Experimental study on influence of geo-cell reinforcement on dynamic properties of rubber-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1616-1625. DOI: 10.11779/CJGE201709009
Citation: LIU Fang-cheng, WU Meng-tao, CHEN Ju-long, ZHANG Yun-fei, ZHENG Yu-feng. Experimental study on influence of geo-cell reinforcement on dynamic properties of rubber-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1616-1625. DOI: 10.11779/CJGE201709009

Experimental study on influence of geo-cell reinforcement on dynamic properties of rubber-sand mixtures

More Information
  • Received Date: July 26, 2016
  • Published Date: September 24, 2017
  • The rubber-sand mixtures (RSM) are more and more widely used in civil engineering as light filling and energy absorbing materials. The geo-cell can be used to reinforce RSM to improve its shear strength and stability. Little knowledge has been reported on the dynamic properties of RSM or geo-cell reinforced RSM (GCRSM). Based on this, the hysteretic properties of RSM with or without geo-cell reinforcing under cyclic horizontal loadings are investigated through large-size cyclic simple shear tests. The hysteretic curves, dynamic shear modulus curves and damping ratio curves of RSM and GCRSM are obtained by tests and fitted by the Stokeo-Darendeli model to gain parameters of dynamic properties. The comparative analysis of dynamic properties between RSM and GCRSM is carried out, and the rules and mechanisms of how the geo-cell influences the dynamic properties of RSM are verified. The test results show that: (1) Owing to the restriction of local shear band development in the specimen by the geo-cell, the S-shaping characteristics is less pronounced and the damping ratio increases under large strains when comparing GCRSM to RSM. (2) The dynamic shear modulus of RSM is increased by the geo-cell reinforcement, and the increment becomes more pronounced with addition of rubber content of RSM, which is believed due to the normal stress increment between particles in RSM caused by tuck net effect of geo-cell. (3) The influence of cycle numbers on dynamic properties of RSM decreases with use of geo-cell reinforcement. The decay velocity of the maximum dynamic shear modulus of RSM with both rubber content and vertical pressure is reduced when the geo-cell is used to reinforce RSM. Quantitative influences of geo-cell reinforcement on the dynamic characteristics of RSM are also provided for reference of the following researches and engineering applications.
  • [1]
    中国人民共和国工业与信息化部. 再生资源综合利用先进适用技术目录(第二批)[EB]. 2014. (Ministry of Industry and Information Technology of PRC. Catalogue of advanced applicable technologies for comprehensive utilization of renewable resources (the 2nd batch) [EB]. 2014. (in Chinese)) http://www.miit.gov.cn/n11293472/n11293832/n12845605/n11391689/15875428.html.
    [2]
    FENG Z Y, SUTTER K G. Dynamic properties of granulated rubber-sand mixtures[J]. Geotechnical Testing Journal, 2000, 23(3): 338-344.
    [3]
    尚守平, 岁小溪, 周志锦, 等. 橡胶颗粒-砂混合物动剪切模量的试验研究[J]. 岩土力学, 2010, 31(2): 377-381. (SHANG Shou-ping, SUI Xiao-xi, ZHOU Zhi-jin, et al. Study of dynamic shear modulus of granulated rubber-sand mixture[J]. Rock and Soil Mechanics, 2010, 31(2): 377-381. (in Chinese))
    [4]
    ANASTASIADIS A, SENETAKIS K, PITILAKIS K, et al. Dynamic behavior of sand/rubber mixtures: Part I effect of rubber content and duration of confinement on small-strain shear modulus and damping ratio[J]. Journal of ASTM International, 2011, 9(2): 1-17.
    [5]
    ANASTASIADIS A, SENETAKIS K, PITILAKIS K, et al. Dynamic behavior of sand/rubber mixtures, Part II: Effect of rubber content on G / G 0 -γ-DT curbes and volumetric threshold strain[J]. Journal of ASTM International, 2011, 9(2): 1-12.
    [6]
    ANASTASIADIS A, SENETAKIS K, PITILAKIS K. Small-strain shear modulus and damping ratio of sand-rubber and gravel-rubber mixtures[J]. Geotechnical and Geological Engineering, 2012, 30: 363-382.
    [7]
    SENETAKIS K, ANASTASIADIS A, PITILAKIS K. Dynamic properties of dry sand/rubber (SRM) and gravel/rubber (GRM) mixtures in a wide range of shearing strain amplitudes[J]. Soil Dynamics and Earthquake Engineering, 2012, 33: 38-53.
    [8]
    RONALD L M, LINDSAY R J, TREVOR E K. The economics of seismic isolation in buildings[J]. Earthquake Spectra, 1990, 6(2): 245-263.
    [9]
    曹万林, 戴租远, 叶 炜, 等. 村镇建筑低成本隔震技术研究现状与展望[J]. 自然灾害学报, 2014, 23(6): 38-46. (CAO Wan-lin Cao, DAI Zu-yuan, YE Wei, et al. Research and prospect of low-cost isolation techniques for rural buildings[J]. Journal of Natural Disasters, 2014, 23(6): 38-46. (in Chinese))
    [10]
    TSANG H H. Seismic isolation by rubber-soil mixtures for developing countries[J]. Earthquake Engineering and Structural Dynamics, 2008, 37(2): 283-303.
    [11]
    TSANG H H, LO S H, XU X, et al. Seismic isolation for low-to-medium-rise buildings using granulated rubber-soil mixtures: numerical study[J]. Earthquake Engineering and Structure Dynamics, 2012, 41: 2009-2024.
    [12]
    SAMAN Y S, MONA R. Effect of seismic isolation by rubber soil mixture on seismic demand of steel moment frame in near fault area[J]. Structure and Steel, 2012, 7(10): 41-60.
    [13]
    ABDELHALEEM A M, EL-SHERBINY R M, LOTFY H, et al. Evaluation of rubber/sand mixtures as replacement soils to mitigate earthquake induced ground motions[C]// Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris, 2013: 3163-3166.
    [14]
    BANDYOPADHYAY S, SENGUPTA A, REDDY G R. Performance of sand and shred ded rubber tire mixture as a nat ural base isolator for earthquake protection[J]. Earthquake Engineering & Engineering Vibration, 2015, 14(4): 683-693.
    [15]
    PITILAKIS K, KARAPETROU S, TSAGDI K. Numerical investigation of the seismic response of RC buildings on soil replaced with rubber-sand mixtures[J]. Soil Dynamics and Earthquake Engineering, 2015, 79: 237-252.
    [16]
    岁小溪. 橡胶颗粒-砂混合物隔震性能研究[D]. 长沙: 湖南大学土木工程学院, 2009. (SUI Xiao-xi. Study on isolation performance of rubber sand mixtures[D]. Changsha: College of Civil Engineering, Hunan University, 2009. (in Chinese))
    [17]
    刘方成, 任东滨, 刘 娜, 等. 土工格室加筋橡胶砂垫层隔震效果数值分析[J]. 土木工程学报, 2015, 47(增刊2): 1-7. (LIU Fang-cheng, REN Dong-bin, LIU Na, et al. Numerical simulation on the isolation effect of geocell reinforced rubber-sand mixture cushion earthquake base isolator[J]. China Civil Engineering Journal, 2015, 47(S2): 109-118. (in Chinese))
    [18]
    LESHCHINSKY B, LING H. Effects of geocell confinement on strength and deformation behavior of gravel[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2013, 139(2): 340-352.
    [19]
    邓 鹏, 郭 林, 蔡袁强, 等. 考虑填料-土工格室相互作用的加筋路堤力学响应研究[J]. 岩石力学与工程学报, 2015, 34(3): 621-630. (DENG Peng, GUO Lin, CAI Yuan-qiang, et al. Mechanical behavior of reinforced embankment considering interaction between gravel and geo-cell[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 621-630. (in Chinese))
    [20]
    尚守平, 刘方成, 杜运兴, 等. 应变累积对黏土动剪模量和阻尼比影响的试验研究[J]. 岩土力学, 2006, 27(5): 683-688. (SHANG Shou-ping, LIU Fang-cheng, DU Yun-xing. Experimental study on effect of shear strain accumulation on dynamic shear modulus and damping ratio of clay soil[J]. Rock and Soil Mechanics, 2006, 27(5): 683-688. (in Chinese))
    [21]
    ISHIHARA K. Modeling of stress-strain relations of soils in cyclic loading[C]// Proceedings of 5th Conference on Numerical Methods in Geomechanics. Nagoya, 1985: 373-380.
    [22]
    VUCETIC M. Normalized behavior of clay under irregular cyclic loading[J]. Canada Geotechnical Journal, 1990, 27: 29-46.
    [23]
    DARENDELI M B, STOKOE K H. Dynamic properties of soils subjected to the 1994 Northridge Earthquake[R]. Austin: Civil Engineering Department, University of Texas at Austin, 1997.
    [24]
    李元海, 朱合华, 靖洪文, 上野胜利. 基于数字照相的砂土剪切变形模式的试验研究[J]. 同济大学学报(自然科学版), 2007, 35(5): 685-689. (LI Yuan-hai, ZHU He-hua, JING Hong-wen, et al. Experimental investigation of shear deformation patterns in sands based on digital image correlation[J]. Journal of Tongji University (Natural Science), 2007, 35(5): 685-689. (in Chinese))
    [25]
    左永振, 程展林, 赵 娜. 千枚岩碎屑土三轴试验剪切带扩展性状的CT研究[J]. 岩土工程学报, 2015, 37(8): 1524-1531. (ZUO Yong-zhen, CHENG Zhan-lin, ZHAO Na. Expansion mechanism of shear bands in phyllite detritus soil by CT technology[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1524-1531. (in Chinese))
  • Cited by

    Periodical cited type(19)

    1. 张伟丽,李明依,李俊,钱程,陈宗武. 基于MICP技术的固化黏土抗侵蚀性能研究. 安全与环境工程. 2025(01): 201-210+232 .
    2. 高瑜,邢家伟,王晓荣,韩红伟,樊促遥. 核磁共振作用下微生物矿化风沙土材料的微观孔隙. 科学技术与工程. 2025(05): 2066-2073 .
    3. 王东星,许凤丽,泮晓华,商武锋,吴章平,郭克诚. GGBS-MICP协同固化淤泥质砂土工程特性研究. 岩石力学与工程学报. 2025(05): 1349-1362 .
    4. 朱文羲,邓华锋,李建林,肖瑶,熊雨,程雷. 木质素磺酸钙增强花岗岩残积土微生物固化效果研究. 土木工程学报. 2024(03): 123-132 .
    5. 徐志平,贾卓龙,晏长根,王逸凡. 聚丙烯纤维加筋黄土边坡防护原位测试及改进策略. 人民黄河. 2024(04): 111-116 .
    6. 耿会岭,赵卫全,赵永刚,杨晓东,于凡. 生物诱导碳酸钙沉淀在改善土壤侵蚀中的应用. 水利水电技术(中英文). 2024(03): 11-23 .
    7. 蒋钊,彭劼,许鹏旭,卫仁杰,李亮亮. 微生物结合碳纤维加固钙质砂的高强度试验研究. 土木与环境工程学报(中英文). 2024(05): 64-73 .
    8. 付贵永,肖杨,史金权,周航,刘汉龙. 干湿循环下EICP联合黄原胶加固钙质粉土劣化特性试验研究. 岩土工程学报. 2024(11): 2341-2351 . 本站查看
    9. 郑宏扬,王瑞,刘宇佳,唐朝生. 基于生物碳化活性氧化镁技术抑制土体干缩开裂的试验研究. 高校地质学报. 2024(06): 705-713 .
    10. 袁童,雷学文,艾东,安然,陈昶,陈欣. 椰壳纤维-MICP复合改良膨胀土强度特性. 水利与建筑工程学报. 2023(03): 105-111 .
    11. 赵卫全,张银峰,李娜,耿会岭,严俊. 微生物改良膨胀土的胀缩性及耐水性试验研究. 中国水利水电科学研究院学报(中英文). 2023(04): 350-359 .
    12. 杜掀,郑涛,卢超波,杨庭伟,姜洪亮. 不同类型纤维对MICP处理钙质砂物理力学性能的影响. 西部交通科技. 2023(01): 60-63 .
    13. 胡其志,霍伟严,马强,陶高梁. MICP联合纤维加筋黄土的力学性能及水稳性研究. 人民长江. 2023(08): 227-232+248 .
    14. 张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 .
    15. 张建伟,赵聪聪,尹悦,石磊,边汉亮,韩智光. 紫外诱变产脲酶菌株加固粉土的试验研究. 岩土工程学报. 2023(12): 2500-2509 . 本站查看
    16. 陈欣,安然,汪亦显,陈昶. 胶结液浓度对MICP固化残积土力学性能影响及机理研究. 水利与建筑工程学报. 2023(06): 100-106+149 .
    17. 贺桂成,唐孟媛,李咏梅,李春光,张志军,伍玲玲. 改性黄麻纤维联合微生物胶结铀尾砂的抗渗性能试验研究. 岩土力学. 2023(12): 3459-3470 .
    18. 黄安国,何稼,邵应峰. EICP联合纤维加固边坡表层抗侵蚀试验研究. 河南科学. 2022(09): 1411-1421 .
    19. 申春妮,方祥位,胡丰慧,姚志华,李洋洋. 珊瑚砂地基中微生物珊瑚砂桩承载特性试验研究. 岩土工程学报. 2022(S1): 68-73 . 本站查看

    Other cited types(19)

Catalog

    Article views PDF downloads Cited by(38)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return