Citation: | LIU Fang-cheng, WU Meng-tao, CHEN Ju-long, ZHANG Yun-fei, ZHENG Yu-feng. Experimental study on influence of geo-cell reinforcement on dynamic properties of rubber-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1616-1625. DOI: 10.11779/CJGE201709009 |
[1] |
中国人民共和国工业与信息化部. 再生资源综合利用先进适用技术目录(第二批)[EB]. 2014. (Ministry of Industry and Information Technology of PRC. Catalogue of advanced applicable technologies for comprehensive utilization of renewable resources (the 2nd batch) [EB]. 2014. (in Chinese)) http://www.miit.gov.cn/n11293472/n11293832/n12845605/n11391689/15875428.html.
|
[2] |
FENG Z Y, SUTTER K G. Dynamic properties of granulated rubber-sand mixtures[J]. Geotechnical Testing Journal, 2000, 23(3): 338-344.
|
[3] |
尚守平, 岁小溪, 周志锦, 等. 橡胶颗粒-砂混合物动剪切模量的试验研究[J]. 岩土力学, 2010, 31(2): 377-381. (SHANG Shou-ping, SUI Xiao-xi, ZHOU Zhi-jin, et al. Study of dynamic shear modulus of granulated rubber-sand mixture[J]. Rock and Soil Mechanics, 2010, 31(2): 377-381. (in Chinese))
|
[4] |
ANASTASIADIS A, SENETAKIS K, PITILAKIS K, et al. Dynamic behavior of sand/rubber mixtures: Part I effect of rubber content and duration of confinement on small-strain shear modulus and damping ratio[J]. Journal of ASTM International, 2011, 9(2): 1-17.
|
[5] |
ANASTASIADIS A, SENETAKIS K, PITILAKIS K, et al. Dynamic behavior of sand/rubber mixtures, Part II: Effect of rubber content on G / G 0 -γ-DT curbes and volumetric threshold strain[J]. Journal of ASTM International, 2011, 9(2): 1-12.
|
[6] |
ANASTASIADIS A, SENETAKIS K, PITILAKIS K. Small-strain shear modulus and damping ratio of sand-rubber and gravel-rubber mixtures[J]. Geotechnical and Geological Engineering, 2012, 30: 363-382.
|
[7] |
SENETAKIS K, ANASTASIADIS A, PITILAKIS K. Dynamic properties of dry sand/rubber (SRM) and gravel/rubber (GRM) mixtures in a wide range of shearing strain amplitudes[J]. Soil Dynamics and Earthquake Engineering, 2012, 33: 38-53.
|
[8] |
RONALD L M, LINDSAY R J, TREVOR E K. The economics of seismic isolation in buildings[J]. Earthquake Spectra, 1990, 6(2): 245-263.
|
[9] |
曹万林, 戴租远, 叶 炜, 等. 村镇建筑低成本隔震技术研究现状与展望[J]. 自然灾害学报, 2014, 23(6): 38-46. (CAO Wan-lin Cao, DAI Zu-yuan, YE Wei, et al. Research and prospect of low-cost isolation techniques for rural buildings[J]. Journal of Natural Disasters, 2014, 23(6): 38-46. (in Chinese))
|
[10] |
TSANG H H. Seismic isolation by rubber-soil mixtures for developing countries[J]. Earthquake Engineering and Structural Dynamics, 2008, 37(2): 283-303.
|
[11] |
TSANG H H, LO S H, XU X, et al. Seismic isolation for low-to-medium-rise buildings using granulated rubber-soil mixtures: numerical study[J]. Earthquake Engineering and Structure Dynamics, 2012, 41: 2009-2024.
|
[12] |
SAMAN Y S, MONA R. Effect of seismic isolation by rubber soil mixture on seismic demand of steel moment frame in near fault area[J]. Structure and Steel, 2012, 7(10): 41-60.
|
[13] |
ABDELHALEEM A M, EL-SHERBINY R M, LOTFY H, et al. Evaluation of rubber/sand mixtures as replacement soils to mitigate earthquake induced ground motions[C]// Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris, 2013: 3163-3166.
|
[14] |
BANDYOPADHYAY S, SENGUPTA A, REDDY G R. Performance of sand and shred ded rubber tire mixture as a nat ural base isolator for earthquake protection[J]. Earthquake Engineering & Engineering Vibration, 2015, 14(4): 683-693.
|
[15] |
PITILAKIS K, KARAPETROU S, TSAGDI K. Numerical investigation of the seismic response of RC buildings on soil replaced with rubber-sand mixtures[J]. Soil Dynamics and Earthquake Engineering, 2015, 79: 237-252.
|
[16] |
岁小溪. 橡胶颗粒-砂混合物隔震性能研究[D]. 长沙: 湖南大学土木工程学院, 2009. (SUI Xiao-xi. Study on isolation performance of rubber sand mixtures[D]. Changsha: College of Civil Engineering, Hunan University, 2009. (in Chinese))
|
[17] |
刘方成, 任东滨, 刘 娜, 等. 土工格室加筋橡胶砂垫层隔震效果数值分析[J]. 土木工程学报, 2015, 47(增刊2): 1-7. (LIU Fang-cheng, REN Dong-bin, LIU Na, et al. Numerical simulation on the isolation effect of geocell reinforced rubber-sand mixture cushion earthquake base isolator[J]. China Civil Engineering Journal, 2015, 47(S2): 109-118. (in Chinese))
|
[18] |
LESHCHINSKY B, LING H. Effects of geocell confinement on strength and deformation behavior of gravel[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2013, 139(2): 340-352.
|
[19] |
邓 鹏, 郭 林, 蔡袁强, 等. 考虑填料-土工格室相互作用的加筋路堤力学响应研究[J]. 岩石力学与工程学报, 2015, 34(3): 621-630. (DENG Peng, GUO Lin, CAI Yuan-qiang, et al. Mechanical behavior of reinforced embankment considering interaction between gravel and geo-cell[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 621-630. (in Chinese))
|
[20] |
尚守平, 刘方成, 杜运兴, 等. 应变累积对黏土动剪模量和阻尼比影响的试验研究[J]. 岩土力学, 2006, 27(5): 683-688. (SHANG Shou-ping, LIU Fang-cheng, DU Yun-xing. Experimental study on effect of shear strain accumulation on dynamic shear modulus and damping ratio of clay soil[J]. Rock and Soil Mechanics, 2006, 27(5): 683-688. (in Chinese))
|
[21] |
ISHIHARA K. Modeling of stress-strain relations of soils in cyclic loading[C]// Proceedings of 5th Conference on Numerical Methods in Geomechanics. Nagoya, 1985: 373-380.
|
[22] |
VUCETIC M. Normalized behavior of clay under irregular cyclic loading[J]. Canada Geotechnical Journal, 1990, 27: 29-46.
|
[23] |
DARENDELI M B, STOKOE K H. Dynamic properties of soils subjected to the 1994 Northridge Earthquake[R]. Austin: Civil Engineering Department, University of Texas at Austin, 1997.
|
[24] |
李元海, 朱合华, 靖洪文, 上野胜利. 基于数字照相的砂土剪切变形模式的试验研究[J]. 同济大学学报(自然科学版), 2007, 35(5): 685-689. (LI Yuan-hai, ZHU He-hua, JING Hong-wen, et al. Experimental investigation of shear deformation patterns in sands based on digital image correlation[J]. Journal of Tongji University (Natural Science), 2007, 35(5): 685-689. (in Chinese))
|
[25] |
左永振, 程展林, 赵 娜. 千枚岩碎屑土三轴试验剪切带扩展性状的CT研究[J]. 岩土工程学报, 2015, 37(8): 1524-1531. (ZUO Yong-zhen, CHENG Zhan-lin, ZHAO Na. Expansion mechanism of shear bands in phyllite detritus soil by CT technology[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1524-1531. (in Chinese))
|
1. |
张伟丽,李明依,李俊,钱程,陈宗武. 基于MICP技术的固化黏土抗侵蚀性能研究. 安全与环境工程. 2025(01): 201-210+232 .
![]() | |
2. |
高瑜,邢家伟,王晓荣,韩红伟,樊促遥. 核磁共振作用下微生物矿化风沙土材料的微观孔隙. 科学技术与工程. 2025(05): 2066-2073 .
![]() | |
3. |
王东星,许凤丽,泮晓华,商武锋,吴章平,郭克诚. GGBS-MICP协同固化淤泥质砂土工程特性研究. 岩石力学与工程学报. 2025(05): 1349-1362 .
![]() | |
4. |
朱文羲,邓华锋,李建林,肖瑶,熊雨,程雷. 木质素磺酸钙增强花岗岩残积土微生物固化效果研究. 土木工程学报. 2024(03): 123-132 .
![]() | |
5. |
徐志平,贾卓龙,晏长根,王逸凡. 聚丙烯纤维加筋黄土边坡防护原位测试及改进策略. 人民黄河. 2024(04): 111-116 .
![]() | |
6. |
耿会岭,赵卫全,赵永刚,杨晓东,于凡. 生物诱导碳酸钙沉淀在改善土壤侵蚀中的应用. 水利水电技术(中英文). 2024(03): 11-23 .
![]() | |
7. |
蒋钊,彭劼,许鹏旭,卫仁杰,李亮亮. 微生物结合碳纤维加固钙质砂的高强度试验研究. 土木与环境工程学报(中英文). 2024(05): 64-73 .
![]() | |
8. |
付贵永,肖杨,史金权,周航,刘汉龙. 干湿循环下EICP联合黄原胶加固钙质粉土劣化特性试验研究. 岩土工程学报. 2024(11): 2341-2351 .
![]() | |
9. |
郑宏扬,王瑞,刘宇佳,唐朝生. 基于生物碳化活性氧化镁技术抑制土体干缩开裂的试验研究. 高校地质学报. 2024(06): 705-713 .
![]() | |
10. |
袁童,雷学文,艾东,安然,陈昶,陈欣. 椰壳纤维-MICP复合改良膨胀土强度特性. 水利与建筑工程学报. 2023(03): 105-111 .
![]() | |
11. |
赵卫全,张银峰,李娜,耿会岭,严俊. 微生物改良膨胀土的胀缩性及耐水性试验研究. 中国水利水电科学研究院学报(中英文). 2023(04): 350-359 .
![]() | |
12. |
杜掀,郑涛,卢超波,杨庭伟,姜洪亮. 不同类型纤维对MICP处理钙质砂物理力学性能的影响. 西部交通科技. 2023(01): 60-63 .
![]() | |
13. |
胡其志,霍伟严,马强,陶高梁. MICP联合纤维加筋黄土的力学性能及水稳性研究. 人民长江. 2023(08): 227-232+248 .
![]() | |
14. |
张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 .
![]() | |
15. |
张建伟,赵聪聪,尹悦,石磊,边汉亮,韩智光. 紫外诱变产脲酶菌株加固粉土的试验研究. 岩土工程学报. 2023(12): 2500-2509 .
![]() | |
16. |
陈欣,安然,汪亦显,陈昶. 胶结液浓度对MICP固化残积土力学性能影响及机理研究. 水利与建筑工程学报. 2023(06): 100-106+149 .
![]() | |
17. |
贺桂成,唐孟媛,李咏梅,李春光,张志军,伍玲玲. 改性黄麻纤维联合微生物胶结铀尾砂的抗渗性能试验研究. 岩土力学. 2023(12): 3459-3470 .
![]() | |
18. |
黄安国,何稼,邵应峰. EICP联合纤维加固边坡表层抗侵蚀试验研究. 河南科学. 2022(09): 1411-1421 .
![]() | |
19. |
申春妮,方祥位,胡丰慧,姚志华,李洋洋. 珊瑚砂地基中微生物珊瑚砂桩承载特性试验研究. 岩土工程学报. 2022(S1): 68-73 .
![]() |