• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
ZUO Jian-ping, CHEN Yan, SONG Hong-qiang, WEI Xu. Evolution of pre-peak axial crack strain and nonlinear model for coal-rock combined body[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1609-1615. DOI: 10.11779/CJGE201709008
Citation: ZUO Jian-ping, CHEN Yan, SONG Hong-qiang, WEI Xu. Evolution of pre-peak axial crack strain and nonlinear model for coal-rock combined body[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1609-1615. DOI: 10.11779/CJGE201709008

Evolution of pre-peak axial crack strain and nonlinear model for coal-rock combined body

More Information
  • Received Date: June 16, 2016
  • Published Date: September 24, 2017
  • With the gradual deepening of coal mining layer in China, fundamental understanding of mechanical characteristics and constitutive relationship of the coal-rock combined body is increasingly significant. The original crack and interlayer between coal and rock have a major influence on the mechanical properties of the coal-rock combined body. In order to investigate the influence of crack and interlayer, the evolution characteristics of axial crack strain along with axial strain and axial stress are studied, and based on the concept of engineering strain and natural (true) strain, the Axial Crack Closure Model (ACCM) and the Axial Crack Propagation Model (ACPM) are established. Finally the constitutive model for pre-peak stress-strain curve is proposed. It is found that on the basis of the axial crack strain changing along with the axial strain, there are 4 stages in the whole process: initial stage, stable stage, slow-growth stage and rapid-growth stage. The characteristics of the axial crack strain evolving with the axial stress are similar to those changing with the axial strain. The ACCM, ACPM and axial stress-strain model are found to fit with the experimental data well, and they can describe the nonlinear characteristic of stress-strain relationship.
  • [1]
    钱鸣高. 煤炭的科学开采[J]. 煤炭学报, 2010, 35(4): 529-534. (QIAN Ming-gao. On sustainable coal mining in China[J]. Journal of China Coal Society, 2010, 35(4): 529-534. (in Chinese))
    [2]
    谢和平, 高 峰, 鞠 杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 2015, 34(11): 2161-2178. (XIE He-ping, GAO Feng, JU Yang. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161-2178. (in Chinese))
    [3]
    陈忠辉, 傅宇方, 唐春安. 单轴压缩下双试样相互作用的实验研究[J]. 东北大学学报: 自然科学版, 1997, 18(4): 382-385. (CHEN Zhong-hui, FU Yu-fang, TANG Chun-an. Experimental study of interaction of two rock specimen under uniaxial compression[J]. Journal of Northeast University (Natural Science), 1997, 18(4): 382-385 (in Chinese))
    [4]
    PATERSON M S, WONG T F. Experimental rock deformation—the brittle field[M]. 2nd ed. New York: Spinger-Verlag, 2005.
    [5]
    MOGI K. Experimental rock mechanics[M]. Florida: CRC Press, 2007.
    [6]
    JAEGER J C, COOK N G W, ZIMMERMAN R W. Fundamentals of rock mechanics[M]. 4th ed. Oxford: Blackwell Publishing, 2007.
    [7]
    ZUO J P, WANG X S, MAO D Q. SEM in-situ study on the effect of offset-notch on basalt cracking behavior under three-point bending load[J]. Engineering Fracture Mechanics, 2014, 131: 504-513.
    [8]
    LI Y P, CHEN L Z, WANG Y H. Experimental research on pre-cracked marble under compression[J]. International Journal of Solids and Structures, 2005, 42(9): 2505-2516.
    [9]
    WONG L N Y, EINSTEIN H H. Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 239-249.
    [10]
    MORADIAN Z, EINSTEIN H H, BALLIVY G. Detection of cracking levels in brittle rocks by parametric analysis of the acoustic emission signals[J]. Rock Mechanics and Rock Engineering, 2015, 49(3): 785-800.
    [11]
    杨圣奇, 刘相如. 不同围压下断续预制裂隙大理岩扩容特性试验研究[J]. 岩土工程学报, 2012, 34(12): 2188-2197. (YANG Sheng-qi, LIU Xiang-ru. Experimental investigation on dilatancy behavior of marble with pre-existing fissures under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2188-2197. (in Chinese))
    [12]
    梁正召, 肖东坤, 李聪聪, 等. 断续节理岩体强度与破坏特征的数值模拟研究[J]. 岩土工程学报, 2014, 36(11): 2086-2095. (LIANG Zheng-zhao, XIAO Dong-kun, LI Cong-cong, et al. Numerical study on strength and failure modes of rock mass with discontinuous joints[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2086-2095. (in Chinese))
    [13]
    刘泉声, 黄诗冰, 康永水, 等. 低温冻结岩体单裂隙冻胀力与数值计算研究[J]. 岩土工程学报, 2015, 37(9): 1572-1580. (LIU Quan-sheng, HUANG Shi-bing, KANG Yong-shui, et al. Numerical and theoretical studies on frost heaving pressure in a single fracture of frozen rock mass under low temperature[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1527-1580. (in Chinese))
    [14]
    MARTIN C D. The strength of massive Lac du Bonnet granite around underground openings[D]. Manitoba: University of Manitoba, 1993.
    [15]
    MARTIN C D. Seventeenth Canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength[J]. Canadian Geotechnical Journal, 1997, 34(5): 698-725.
    [16]
    CAI M, KAISER P K, TASAKA Y, et al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 833-847.
    [17]
    王 宇, 李 晓, 武艳芳, 等. 脆性岩石起裂应力水平与脆性指标关系探讨[J]. 岩石力学与工程学报, 2014, 33(2): 264-275. (WANG Yu, LI Xiao, WU Yan-fang, et al. Research on relationship between crack initiation stress level and brittleness indices for brittle rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 264-275. (in Chinese))
    [18]
    LIU H H, RUTQVIST J, BERRYMAN J G. On the relationship between stress and elastic strain for porous and fractured rock[J]. International Journal of Rock Mechanics and Mining Scences, 2009, 46(2): 289-296.
    [19]
    ZHAO Y, LIU H H. An elastic strain-stress relationship for porous rock under anisotropic stress conditions[J]. Rock Mechanics and Rock Engineering, 2012, 45(3): 389-399.
    [20]
    李连崇, LIU Hui-hai, 赵 瑜. 基于双应变胡克模型的岩石非线性弹性行为分析[J]. 岩石力学与工程学报, 2012, 31(10): 2119-2126. (LI Lian-chong, LIU Hui-hai, ZHAO Yu. Investigation on nonlinear elastic behavior of rocks based on a two-part hooke’s model[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 2119-2126. (in Chinese))
    [21]
    CHEN Y F, WEI K, LIU W, ET al. Experimental characterization and micromechanical modelling of anisotropic slates[J]. Rock Mechanics and Rock Engineering, in Press.
    [22]
    彭 俊, 荣 冠, 周创兵, 等. 岩石裂纹闭合效应及其定量模型研究[J]. 岩土力学, 2016, 37(1): 126-132. (PENG Jun, RONG Guan, ZHOU Chuang-bing, et al. A study of crack closure effect of rocks and its quantitative model[J]. Rock and Soil Mechanics, 2016, 37(1): 126-132. (in Chinese))
    [23]
    ZUO J P, WANG Z F, ZHOU H W, et al. Failure behavior of a rock-coal-rock combined body with a weak coal interlayer[J]. International Journal of Mining Science and Technology, 2013, 23(6): 907-912.
    [24]
    左建平, 谢和平, 孟冰冰, 等. 煤岩组合体分级加卸载特性的试验研究[J]. 岩土力学, 2011, 32(5): 1287-1296. (ZUO Jian-ping, XIE He-ping, MENG Bing-bing, et al. Experimental research on loading-unloading behavior of coal-rock combination bodies at different stress levels[J]. Rock and Soil Mechanics, 2011, 32(5): 1287-1296. (in Chinese))
    [25]
    左建平, 裴建良, 刘建锋,等. 煤岩样破裂过程中声发射行为及时空演化机制[J]. 岩石力学与工程学报, 2011, 30(8): 1564-1570. (ZUO Jian-ping, PEI Jian-liang, LIU Jian-feng, et al. Investigation on acoustic emission behavior and its time-space evolution mechanism in failure process of coal-rock combined body[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(8): 1564-1570. (in Chinese))
    [26]
    左建平, 谢和平, 吴爱民, 等. 深部煤岩单体及组合体的破坏机制与力学特性研究[J]. 岩石力学与工程学报, 2011, 30(1): 84-92. (ZUO Jian-ping, XIE He-ping, WU Ai-min, et al. Investigation on failure mechanisms and mechanical behaviors of deep coal-rock single body and combined body[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1): 84-92. (in Chinese))
  • Cited by

    Periodical cited type(22)

    1. 王智超,彭柱,彭峰,闫实. 聚氨酯固化钙质砂物理力学特性. 长江科学院院报. 2024(01): 107-113 .
    2. 韩庆华,王永超,刘铭劼,李浩斌. 振动台试验饱和机制砂模型土动力特性研究. 土木工程学报. 2024(03): 110-122 .
    3. 王家全,和玉,祝梦柯,钱弘毅. 相对密实度和固结应力比对北部湾海砂动力特性影响的试验研究. 安全与环境工程. 2024(04): 20-28 .
    4. 王钰轲,李俊豪,邵景干,余翔. 不同影响因素下路用黄河泥沙动剪切模量和阻尼比试验及理论模型研究. 工程科学学报. 2023(03): 509-519 .
    5. 胡健,肖杨,肖鹏,王林,丁选明,仉文岗,刘汉龙. 基于机器学习预测微生物加固钙质砂统一动强度. 中国公路学报. 2023(02): 80-88 .
    6. 刘鑫,李飒,尹福顺,姚婷. 基于动态图像技术的南海钙质土颗粒形态特征研究. 岩土工程学报. 2023(03): 590-598 . 本站查看
    7. 邱筱童,尹训强,王桂萱. 考虑不同影响因素的珊瑚岛礁场地地震响应分析. 自然灾害学报. 2023(01): 131-138 .
    8. 尹福顺,李飒,刘鑫. 钙质粗粒料颗粒强度和压缩特性的试验研究. 岩土力学. 2023(04): 1120-1129+1152 .
    9. 李能,吴杨,周福霖,谭平. 岛礁吹填珊瑚砂不排水单调和循环剪切特性试验. 中国公路学报. 2023(08): 152-161 .
    10. 郭桢,蒲建,卢劲锴,黄雨. 南海西沙岛礁非饱和珊瑚砂共振柱-弯曲元试验研究. 工程地质学报. 2023(05): 1552-1562 .
    11. 吴杨,崔杰,李晨,温丽维,单振东,廖静容. 细粒含量对岛礁吹填珊瑚砂最大动剪切模量影响的试验研究. 岩石力学与工程学报. 2022(01): 205-216 .
    12. 赵云辉,孟凡超,郑志华. 相对密实度对结构性砂土动剪切模量和阻尼比影响的试验研究. 工程抗震与加固改造. 2022(01): 152-159 .
    13. 吴琪,杨铮涛,刘抗,陈国兴. 细粒含量对饱和珊瑚砂动力变形特性影响试验研究. 岩土工程学报. 2022(08): 1386-1396 . 本站查看
    14. 陈龙珠,顾晓强. 共振柱试验确定土动剪切模量和阻尼比的理论辨析. 地基处理. 2022(05): 445-450 .
    15. 王伟,李犇,罗佳乐,胡俊,姜屏,李娜. 动荷载作用历史对水泥固化钙质砂三轴力学特性影响. 自然灾害学报. 2022(05): 158-167 .
    16. 周正龙,丁芷萱,刘杰,赵凯,梁珂,鹿庆蕊. 南海海域饱和粉土动剪切模量和阻尼比试验研究. 土木工程学报. 2022(S1): 227-233 .
    17. 宋前进,程磊,贺为民. 孔隙比对土体动力特性参数的影响——以豫东平原粉土为例. 科学技术与工程. 2021(07): 2830-2835 .
    18. 高盟,彭晓东,陈青生. 南海非饱和钙质砂动力特性三轴试验研究. 北京工业大学学报. 2021(06): 625-635 .
    19. ZHANG Yan-ling,DING Xuan-ming,CHEN Zhi-xiong,WU Qi,WANG Cheng-long. Seismic responses of slopes with different angles in coral sand. Journal of Mountain Science. 2021(09): 2475-2485 .
    20. 郭聚坤,王瑞,尹斌,卞贵建,魏道凯. 钢-钙质砂界面循环剪切特性试验研究. 建筑结构. 2021(S2): 1613-1617 .
    21. 宋前进,程磊,贺为民. 豫东平原粉质黏土动剪切模量与阻尼比试验研究. 地震工程学报. 2020(04): 1013-1018 .
    22. 信鹏飞,李飒,吴文娟. 冲击荷载作用下钙质砂破碎与变形特性研究. 水力发电学报. 2019(12): 102-111 .

    Other cited types(16)

Catalog

    Article views (374) PDF downloads (282) Cited by(38)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return