• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DONG Hui, HUANG Run-qiu, LUO Xiao, LUO Zheng-dong, JIANG Xiu-zi. Spatial distribution and variability of infiltration characteristics for shallow slope of gravel soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1501-1509. DOI: 10.11779/CJGE201708018
Citation: DONG Hui, HUANG Run-qiu, LUO Xiao, LUO Zheng-dong, JIANG Xiu-zi. Spatial distribution and variability of infiltration characteristics for shallow slope of gravel soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1501-1509. DOI: 10.11779/CJGE201708018

Spatial distribution and variability of infiltration characteristics for shallow slope of gravel soil

More Information
  • Received Date: April 04, 2016
  • Published Date: August 24, 2017
  • For accurate analysis of the spatial distribution and spatial variability of infiltration characteristics of aggregate gravel soil, the self-made double ring infiltration apparatus and gravel screening instrument have been used for testing gravel mass fraction of different particle size on slope , the permeability coefficient of gravel soil and different depth of gravel soil moisture content. Software is used for spatial interpolation of the discrete test data through the Kriging interpolation method. The cross tests are used to select a reasonable theoretical model, and the precise interpolation results are obtained. The results show that Kostiakov formula is used to simulate the infiltration process of gravel soil. The highest spatial interpolation precision about the gravel in different particle size sections is Gaussian semi-variable function theoretical model, and spherical model for the permeability coefficient of gravel soil and the moisture content of gravel soil at different depths. The gravels with particle size larger than 10 mm are mainly distributed in the top and middle slope regions, and the regional spatial variability of infiltration rate is relatively large. The small gravels (size of 2~10 mm) accumulate in the slope foot. The permeability coefficient of gravel soil along slope from top to bottom has a gradually decreasing spatial distribution trend. The moisture content at the slope waist is higher than that at the slope top and toe in shallow soil (0~15 cm), but that at the slope toe is higher than that at the slope top and toe in deep soil layer (15~25 cm). The water content of slope increases slowly with the increasing depth. The research results lay a theoretical foundation for the establishment of the prediction model for gravel soil.
  • [1]
    贺可强, 周敦云, 王思敬. 降雨型堆积层滑坡的加卸载响应比特征及其预测作用与意义[J]. 岩石力学与工程学报, 2004, 23(16): 2665-2670. (HE Ke-qiang, ZHOU Dun-yun, WANG Si-jing. Features of load-unload response ratio and its significance in predication of colluvial landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(16): 2665-2670. (in Chinese))
    [2]
    许建聪, 尚岳全, 王建林. 松散土质滑坡位移与降雨量的相关性研究[J]. 岩石力学与工程学报, 2006, 25(增刊1): 2854-2860. (XU Jian-cong, SHANG Yue-quan, WANG Jian-lin. Study on relationship between slope-mass slide displacement and precipitation of loose soil landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 2854-2860. (in Chinese))
    [3]
    董 辉, 陈玺文, 傅鹤林, 等. 堆积碎石土剪切特性的三轴试验[J]. 长安大学学报(自然科学版), 2015, 35(2): 59-66. (DONG Hui, CHEN Xi-wen, FU He-lin, et al. Triaxlal test of shear properties of eluvial gravel soil[J]. Journal of Chang’an University (Natural Science Edition), 2015, 35(2): 59-66. (in Chinese))
    [4]
    张春敏, 王根绪, 王军德, 等. 高寒草甸典型小流域雨后土壤水分空间变异特征[J]. 水土保持研究, 2007, 14(6): 10-14. (ZHANG Chun-min, WANG Gen-xu, WANG Jun-de, et al. The spatial heterogeneity of soil moisture after raining in representative gully catchment of the alpine meadow[J]. Research of Soil and Water Conservation, 2007, 14(6): 10-14. (in Chinese))
    [5]
    武世亮. 土壤入渗特性的空间变异性及与土壤物理特性的相关性研究[D]. 西安: 西北农林科技大学, 2014. (WU Shi-liang. Study on the spatial variability of soil infiltration properties and the spatial correlation with soil physical properties[D]. Xi'an: Northwest A&F University, 2014. (in Chinese))
    [6]
    王月玲, 蒋 齐, 蔡进军, 等. 半干旱黄土丘陵区土壤水分入渗速率的空间变异性[J]. 水土保持通报, 2008, 28(4): 52-55. (WANG Yue-ling, JIANG Qi, CAI Jin-jun, et al. Spatial variability of infiltration rate in the semiarid loess hilly and gully area[J]. Bulletin of Soil and Water Conservation, 2008, 28(4): 52-55. (in Chinese))
    [7]
    蒋芳市, 黄炎和, 林金石, 等. 崩岗崩积体土壤渗透特性分析[J]. 水土保持学报, 2013, 27(3): 49-54. (JIANG Fang-shi, HUANG Yan-he, LIN Jin-shi, et al. Study on soil permeability of slumping deposits in Benggang[J]. Journal of Soil and Water Conservation, 2013, 27(3): 49-54. (in Chinese))
    [8]
    冶运涛, 伍靖伟, 王兴奎. 双套环测定土壤渗透系数数值模拟分析[J]. 灌溉排水学报, 2007, 26(3): 14-18. (YE Yun-tao, WU Jing-wei, WANG Xing-kui. Numerical simulation of double-ring measuration on hydraulic conductivity[J]. Journal of Irrigation and Drainage, 2007, 26(3): 14-18. (in Chinese))
    [9]
    SL345—2007水利水电工程注水试验规程[S]. 2007: 6-9. (SL345—2007 Code of water injection test for water resources and hydropower engineering[S]. 2007: 6-9. (in Chinese))
    [10]
    SL237—1999土工试验规程[S]. 1999: 114-123. (SL237—1999 Specification of soil test[S]. 1999: 114-123. (in Chinese))
    [11]
    KHANNA M, MALANO H M. Modelling of basin irrigation systems: a review[J]. Agricultural Water Management, 2006, 83(1): 87-99.
    [12]
    PHILIP J R. The theory of infiltration: 1 the infiltration equation and its solution[J]. Soil Science, 1957, 83(5): 345-358.
    [13]
    KOSTIAKOV A N. On the dynamics of the coefficient of water-percolation in soils and on the necessity for studying it from a dynamic point of view for purposes of amelioration [C]// Transcations Communication International Society Soil Science 6th. Moscow, 1932, 6: 17-21.
    [14]
    邓聚龙. 灰色系统理论教程[M]. 武汉: 华中理工大学出版社, 1990: 33-63. (DENG Ju-long. Grey system theory course[M]. Wuhan: Huazhong University of Science and Technology Press, 1990: 33-63. (in Chinese))
    [15]
    徐建华. 现代地理学中的数学方法[M]. 北京: 高等教育出版社, 2002: 21-35. (XU Jian-hua. Mathematical methods in modern geography[M]. Beijing: Higher Education Press, 2002: 21-35. (in Chinese))
    [16]
    胡先莉. 序贯条件模拟方法研究及应用[D]. 成都: 成都理工大学, 2007. (HU Xian-li. Research and application of sequentially conditional simulation methods[D]. Chengdu: Chengdu University of Technology, 2007. (in Chinese))
    [17]
    凌 辉, 武 伟, 王 润, 等. 小尺度下土壤重金属铬含量的空间插值方法比较研究[J]. 西南大学学报(自然科学版), 2007, 29(11): 93-99. (LING Hui, WU Wei, WANG Run, et al. A comparative analysis of various spatial interpolation methods for soil chrome content on a small scale[J]. Journal of Southwest University (Natural Science Edition), 2007, 29(11): 93-99. (in Chinese))
  • Related Articles

    [1]XU Jiabao, ZHANG Zechao, ZHANG Lulu, CAO Zijun, WANG Yu, ZHANG Yifan, ZHANG De, CHEN Yangming. Spatial variability characterization of soil properties in offshore wind farms based on Bayesian theory and conditional co-simulation method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1644-1654. DOI: 10.11779/CJGE20221585
    [2]Test method for studying the materials spatial variability of landslide dam[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240742
    [3]ZHANG Jin-zhang, HUANG Hong-wei, ZHANG Dong-ming, PHOON Kok-kwang, TANG Chong. Simplified methods for deformation analysis of tunnel structures considering spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 134-143. DOI: 10.11779/CJGE202201013
    [4]JIANG Shui-hua, LIU Xian, HUANG Fa-ming, HUANG Jin-song, ZHOU Chuang-bing. Reliability-based design of slope angles for spatially varying slopes based on inverse first-order reliability method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1245-1252. DOI: 10.11779/CJGE202107009
    [5]CHEN Chang-fu, ZHU Shi-min, GAO Jie, WEN Yong-kai, MAO Feng-shan. Kriging method-based creep model for anchor-soil interface considering grouting pressure[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 125-128. DOI: 10.11779/CJGE2019S1032
    [6]YANG Ge, ZHU Sheng. Seismic response of rockfill dams considering spatial variability of rockfill materials via random finite element method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1822-1832. DOI: 10.11779/CJGE201610011
    [7]TANG Yu-geng, KUNG Gordon Tung-chin. Basal-heave analysis of a braced excavation considering spatial variability of soft ground[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 542-545.
    [8]SU Yong-hua, LUO Zheng-dong, ZHANG Pan-feng, YANG Hong-bo. Active searching algorithm for slope stability reliability based on Kriging model[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1863-1869.
    [9]LI Dian-qing, JIANG Shui-hua, ZHOU Chuang-bing, PHOON Kok Kwang. Reliability analysis of slopes considering spatial variability of soil parameters using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1413-1422.
    [10]QI Xiao-hui, LI Dian-qing, ZHOU Chuang-bing, PHOON Kok-kwang. Stochastic analysis method of critical slip surfaces in soil slopes considering spatial variability[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 745-753.
  • Cited by

    Periodical cited type(6)

    1. 刘耀徽,恩和得力海,黄亚平,张耘获,杨坪. 时移跨孔地震全波形反演方法在水泥搅拌桩检测中的应用研究. 地球物理学进展. 2024(05): 2078-2089 .
    2. 张丁宁. 上海滨海平原区土的热物理指标与静力触探Ps值的关系研究. 城市道桥与防洪. 2022(07): 197-199+25 .
    3. 贾剑青,赵阳阳,贾超,辛成平,张帮鑫. 湿陷性黄土地基水泥土搅拌桩加固效果研究. 铁道工程学报. 2022(07): 18-24 .
    4. 何杨闽. 物联网全过程管控水泥搅拌桩关键技术研究. 珠江水运. 2021(11): 36-38 .
    5. 王建梅. 高铁软弱斜坡段路基处理技术研究. 施工技术. 2020(07): 49-53 .
    6. 赵洋洋,杨昌民. 基于RBF神经网络对基桩完整性的预测. 施工技术. 2020(S1): 69-72 .

    Other cited types(1)

Catalog

    Article views (338) PDF downloads (396) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return