• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Xue-jian, ZHUANG Hai-yang, CHEN Guo-xing, WANG Rui. Effect of diaphragm wall on earthquake responses of an underground subway station[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1435-1443. DOI: 10.11779/CJGE201708010
Citation: WANG Xue-jian, ZHUANG Hai-yang, CHEN Guo-xing, WANG Rui. Effect of diaphragm wall on earthquake responses of an underground subway station[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1435-1443. DOI: 10.11779/CJGE201708010

Effect of diaphragm wall on earthquake responses of an underground subway station

More Information
  • Received Date: May 02, 2016
  • Published Date: August 24, 2017
  • At present, the diaphragm wall is always used as the partial side wall of the underground subway station. However, the diaphragm wall is always neglected in the seismic design of an underground structure for that it is looked as a reserved safety for its earthquake resistance. To verify this opinion, a finite-element model is established to simulate the static and dynamic coupling interaction among the soil, the diaphragm wall and the underground subway station. The effects of the diaphragm wall on the earthquake responses of the underground subway station are investigated and analyzed. As a result, the diaphragm wall can increase the lateral deformation stiffness of the underground structure, which reduces the relative lateral seismic deformation of the underground structure. From this point, the seismic design method for the underground structure is conservative. However, the diaphragm wall may also change the seismic deformation characteristics of the underground structure, which will aggravate the earthquake-induced tension damages of the plates of the underground structure under strong earthquakes. Moreover, the diaphragm wall may affect the friction responses on the interaction surfaces between the soils and the underground structure.
  • [1]
    IWATATE T, KOBAYASHI Y, KUSU H, et al. Investigation and shaking table tests of subway structures of the Hyogoken-Nanbu earthquake[C]// The 14th World Conference on Earthquake Engineering. Beijing, 2000: 1043.
    [2]
    HASHASH Y, HOOK J, SCHMIDT B, et al. Seismic design and analysis of underground structure[J]. Tunneling and Underground Space Technology, 2001, 16(4): 247-293.
    [3]
    ZHUANG H Y, CHENG S G, CHEN G X. Numerical emulation and analysis on the earthquake damages of Dakai subway station caused by the Kobe earthquake[J]. Chinese Journal of Rock and Soil Mechanics, 2008, 29(1): 245-250.
    [4]
    川岛一彦. 地下结构の耐震设计[M]. 日本: 鹿岛出版社, 1994. (KWASHIMA K. Seismic design of underground structures[M]. Japan: Kashima Publishing Company, 1994. (in Japanese))
    [5]
    KAWASHIMA K. Seismic design of underground structures in soft ground, a review[C]// Proceedings of the International Symposium on Tunneling in Difficult Ground Conditions. Tokyo, 1999.
    [6]
    杨林德, 王国波, 郑永来, 等. 地铁车站接头结构振动台模型实验及地震响应的三维数值模拟[J]. 岩土工程学报, 2007, 29(12): 1892-1898. (YANG Lin-de, WANG Guo-bo, ZHENG Yong-lai, et al. Shaking table tests on subway station joint structure and 3D numerical simulation of seismic response[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1892-1898. (in Chinese))
    [7]
    刘晶波, 王文晖, 赵冬冬, 等. 复杂断面地下结构地震反应分析的整体式反应位移法[J]. 土木工程学报, 2014, 47(1): 134-142. (LIU Jing-bo, WANG Wen-hui, ZHAO Dong-dong, et al. Integral response deformation method in seismic analysis of complex section underground structures[J]. China Civil Engineering Journal, 2014, 47(1): 134-142. (in Chinese))
    [8]
    王 刚, 张建民, 魏 星. 可液化土层中地下车站的地震反应分析[J]. 岩土工程学报, 2011, 33(10): 1623-1627. (WANG Gang, ZHANG Jian-min, WEI Xing. Seismic response analysis of a subway station in liquefiable soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1623-1627. (in Chinese))
    [9]
    ZHUANG H Y, HUZ H, WANGX J, et al. Seismic responses of a large underground structure in liquefied soils by FEM numerical modelling[J]. Bulletin of Earthquake Engineering, 2015, 13(12): 3645-3668.
    [10]
    ZHUANG H Y, HU Z H, CHEN G X. Numerical modeling on the seismic responses of a large underground structure in soft ground[J]. Journal of Vibroengineering, 2015, 17(2): 802-815.
    [11]
    马学宁, 赵双喜, 艾 昕. 地下连续墙深基坑支护结构振动台模型试验研究[J]. 兰州交通大学学报, 2015, 34(1): 1-5. (MA Xue-ning, ZHAO Shuang-xi, AI xin. Shaking table test study on deep pit supporting structure of underground continuous wall[J]. Journal of Lanzhou Jiaotong University, 2015, 34(1): 1-5. (in Chinese))
    [12]
    LIU H B, SONG E X. Working mechanism of cutoff walls in reducing uplift of large underground structures induced by soil liquefaction[J]. Computers and Geotechnics, 2006(33): 209-211.
    [13]
    ZHUANG H Y, CHEN G X. A viscous-plastic model for soft soil under cyclic loadings[C]// Geotechnical Special Publication of ASCE, Soil and Rock Behavior and Modeling- Proceedings of the Geo-Shanghai Conference, 2006, 150: 343-350.
    [14]
    LEE Jeeho, FENVES Gregory L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998(4): 892-900.
    [15]
    LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25(3): 299-326.
    [16]
    楼梦麟, 王文剑, 朱 彤. 土–结构体系振动台模型试验中土层边界影响问题[J]. 地震工程与工程振动, 2000, 20(2): 30-36. (LOU Meng-lin, WANG Wen-jian, ZHU Tong. Soil lateral boundary effect in shaking table model test of soil-structure system[J]. Earthquake Engineering and Engineering Dynamics, 2000, 20(2): 30-36. (in Chinese))
    [17]
    BS 5975:2008 + A1 2011 Code of practice for temporary works procedures and the permissible stress design of falsework.
    [18]
    庄海洋, 吴祥祖, 陈国兴. 考虑初始静应力状态的土-地下结构非线性静、动力耦合作用研究[J]. 岩石力学与工程学报, 2011, 30(增刊1): 3112-3119. (ZHUANG Hai-yang, WU Xiang-zu, CHEN Guo-xing. Study of nonlinear static and dynamic coupling interaction of soil-underground structure considering initial static stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 3112-3119. (in Chinese))
    [19]
    刘晶波, 李 彬. 三维黏弹性静-动力统一人工边界[J]. 中国科学(E辑): 工程科学材料科学, 2005, 35(9): 966-980. (LIU Jing-bo, LI Bin. A three-dimensional visco-elastic uniform artificial boundary for static and dynamic together[J]. Scientia Sinica (Technologica), 2005, 35(9): 966-980. (in Chinese))
  • Related Articles

    [1]AN Yijing, HAN Pengju, QIN Jiandong, BAI Xiangling, HE Bin, WANG Xiaoyuan. Seismic response analysis of leaning Wenfeng Pagoda considering soil-structure interaction[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 201-207. DOI: 10.11779/CJGE2023S20028
    [2]XU Jing-min, ZHANG Ding-wen, LIU Song-yu. Tunneling-induced sandy ground deformation affected by surface framed structures[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 602-612. DOI: 10.11779/CJGE202204002
    [3]LI Sheng, ZHUANG Hai-yang, WANG Wei, DONG Zheng-fang. Seismic performance of single-story subway station structures with different types of intermediate columns[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1905-1914. DOI: 10.11779/CJGE202110017
    [4]LIN Gao, LI Zhi-yuan, LI Jian-bo. Dynamic soil-structure interaction under complex soil environment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1573-1580. DOI: 10.11779/CJGE202109001
    [5]WANG Jian-ning, DOU Yuan-ming, ZHUANG Hai-yang, FU Ji-sai, MA Guo-wei. Seismic responses of dynamic interaction system of soil-diaphragm wall-complicated unequal-span subway station[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1235-1243. DOI: 10.11779/CJGE201907007
    [6]JIA Cang-qin, HUANG Qi-wu, WANG Gui-he. Numerical upper bound limit analysis based on topology optimization considering soil-structure interaction[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 408-417. DOI: 10.11779/CJGE201803003
    [7]ZHUANG Hai-yang, WANG Xue-jian, WANG Rui, CHEN Guo-xing. Characteristics of lateral deformation of soil-subway dynamic interaction system[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1761-1769. DOI: 10.11779/CJGE201710002
    [8]Analysis on Vibration Characteristic of Metro Tunnel Structure based on Moderately Thick Cylindrical Shells Theory[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 762.
    [9]CHEN Guoxing, CHEN Jihua, WANG Zhihua, ZAI Jinmin. Comparison between shaking table test and numerical modelling of soil-structure-TMD system[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(5): 532-537.
    [10]LIAO Xionghua, ZHOU Jian, ZHANG Kexu, LI Xikui. Application of generalized freedom method to the analysis of soil-st ructure interaction problems[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 672-676.
  • Cited by

    Periodical cited type(5)

    1. 覃浩军,王利杰,蒲国庆,叶坤,周雄雄,王刚. 基于反演参数的高心墙堆石坝蓄水变形研究. 大坝与安全. 2025(01): 47-54 .
    2. 张毅,陈敬江. 基于动力计算的震区水库土石坝稳定性及安全评价研究. 水利科技与经济. 2023(06): 6-10+15 .
    3. 张宏洋,韩鹏举,马聪,陶元浩,李桐,丁泽霖,韩立炜,张先起,张宪雷. 基于改进粒子群算法的土石坝动力参数反演研究. 水利水电技术(中英文). 2023(06): 110-123 .
    4. 张宏洋,李桐,杨益格,丁泽霖,张先起,汪顺生. 基于模态分解和云粒子网络的大坝基岩地震动输入研究. 水利学报. 2023(06): 749-761 .
    5. 王茂华,迟世春,周雄雄. 基于地震记录和SSI方法的高土石坝模态识别. 岩土工程学报. 2021(07): 1279-1287 . 本站查看

    Other cited types(11)

Catalog

    Article views (377) PDF downloads (317) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return