• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Ze-wei, LI Xi-bing, SHANG Xue-yi, DONG Long-jun, LIU Dong, ZHOU Yong-yong. VFOM-based source location and local magnitude calibration for micro-seismic events in mine[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1408-1415. DOI: 10.11779/CJGE201708007
Citation: WANG Ze-wei, LI Xi-bing, SHANG Xue-yi, DONG Long-jun, LIU Dong, ZHOU Yong-yong. VFOM-based source location and local magnitude calibration for micro-seismic events in mine[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1408-1415. DOI: 10.11779/CJGE201708007

VFOM-based source location and local magnitude calibration for micro-seismic events in mine

More Information
  • Received Date: June 29, 2016
  • Published Date: August 24, 2017
  • As the most basic source parameters, locations and local magnitudes of micro-earthquakes are of importance to the analysis and interpretation of micro-seismic data so that their accuracies are crucial. This study introduces a source location method called the virtual field optimization method (VFOM) and provides a parameter regression method which minimizes the station variance for an optimal local magnitude formula. The occurrence sources of a data set consisting of 401 events from the Yongshaba deposit of Kaiyang Mine are located using the VFOM, and an optimal local magnitude formula is regressed using the suggested method in this study. The results show that the locations are reliable and the station variances are significantly reduced. In addition, the bimodal characteristic is observed from the magnitude distribution obtained by the derived formula, indicating two different causes of the micro-seismic data. This study also demonstrates that the local magnitude formula should be regressed using the measured data for a new area, otherwise the magnitude distribution may lose some important characteristics.
  • [1]
    李庶林, 尹贤刚, 郑文达, 等. 凡口铅锌矿多通道微震监测系统及其应用研究[J]. 岩石力学与工程学报, 2005, 24(12): 2048-2053. (LI Shu-lin, YIN Xian-gang, ZHENG Wen-da. Research of multichannel microseismic monitoring system and its application to Fankou lead—zinc mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(12): 2048-2053. (in Chinese))
    [2]
    唐礼忠, 杨承徉, 潘长良. 大规模深井开采微震监测系统站网布置优化[J]. 岩石力学与工程学报, 2006, 25(10): 2036-2042. (TANG Li-zhong, YANG Cheng-xiang, PAN Chang-liang. Optimization of microseismie monitoring network for large-scale deep well mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 2036-2042. (in Chinese))
    [3]
    尚雪义, 李夕兵, 彭 康, 等. 基于EMD_SVD的矿山微震与爆破信号特征提取及分类方法[J]. 岩土工程学报, 2016, 38(10): 1849-1858. (SHANG Xue-yi, LI Xi-bing, PENG Kang, et al. Feature extraction and classification of mine microseism and blast based on EMD_SVD[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1849-1858. (in Chinese))
    [4]
    李 铁, 蔡美峰, 蔡 明. 采矿诱发地震分类的探讨[J]. 岩石力学与工程学报, 2006, 25(增刊2): 3679-3686. (LI Tie, CAI Mei-feng, CAI Ming. A discussion on the classification of mining-induced seismicity[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 3679-3686. (in Chinese))
    [5]
    李夕兵. 岩石动力学基础与应用[M]. 北京: 科学出版社, 2014: 49-51. (LI Xi-bing. Rock dynamics fundamentals and applications[M]. Beijing: Science Press, 2014: 49-51. (in Chinese))
    [6]
    刘晓辉, 吴爱祥, 王春来, 等. 某深井矿山岩爆预测模式研究[J]. 采矿与安全工程学报, 2012, 29(1): 78-83. (LIU Xiao-hui, WU Ai-xiang, WANG Chun-lai, et al. Study on rock burst forecasting prediction in a deep mine[J]. Journal of Mining & Safety Engineering, 2012, 29(1): 78-83. (in Chinese))
    [7]
    赵毅鑫, 姜耀东, 王 涛, 等. “两硬”条件下冲击地压微震信号特征及前兆识别[J]. 煤炭学报, 2012, 37(12): 1960-1966. (ZHAO Yi-xin, JIANG Yao-dong, WANG Tao, et al. Features of microseismic events and precursors of rock burst in underground coal mining with hard roof[J]. Journal of China Coal Society, 2012, 37(12): 1960-1966. (in Chinese))
    [8]
    刘希强, 杜贻合, 徐 波, 等. 区域矿震与地震的定量识别方法及其应用[J]. 中国地震, 2005, 21(1): 50-60. (LIU Xi-qiang, DU Yi-he, XU Bo, et al. The mode identification method and its application to regional mine and nature earthquakes[J]. Earthquake Research in China, 2005, 21(1): 50-60. (in Chinese))
    [9]
    李治平, 王建宙, 蔡美峰, 等. 矿山地震震级的极值分布[J]. 北京科技大学学报, 2002, 24(3): 235-238. (LI Zhi-ping, WANG Jian-zhou, CAI Mei-feng, et al. Magnitude extreme distribution of mining tremor[J]. Journal of University of Science and Technology Beijing, 2002, 24(3): 235-238. (in Chinese))
    [10]
    成云海, 姜福兴, 程久龙, 等. 关键层运动诱发矿震的微震探测初步研究[J]. 煤炭学报, 2006, 31(3): 273-277. (CHENG Yun-hai, JIANG Fu-xing, CHEN Jiu-long, et al. The primary study on microseismic locating and monitoring technology of shock bump caused by key stratum movement[J]. Journal of China Coal Society, 2006, 31(3): 273-277. (in Chinese))
    [11]
    WALDHAUSER F, ELLSWORTH W, et al. A double- difference earthquake location algorithm: method and application to the Northern Hayward fault, California[J]. Bulletin of the Seismological Society of America, 2000, 90(6): 1353-1368.
    [12]
    AKI K, LEE W H K. Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1 a homogeneous initial model[J]. Journal of Geophysical Research, 1976, 81(23): 4381-4399.
    [13]
    AKI K, CHRISTOFFERSSON A, HUSEBYE E S. Determination of the three-dimensional seismic structure of the lithosphere[J]. Journal of Geophysical Research Atmospheres, 2012, 29(6): 148-151.
    [14]
    董陇军, 李夕兵, 唐礼忠, 等. 无需预先测速的微震震源定位的数学形式及震源参数确定[J]. 岩石力学与工程学报, 2011, 30(10): 2057-2067. (DONG Long-jun, LI Xi-bing, TANG Li-zhong, et al. Mathematical functions and parameters for microseismic source location without pre-mearsuring speed[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2057-2067. (in Chinese))
    [15]
    李 健, 高永涛, 谢玉玲, 等. 基于无需测速的单纯形法微地震定位改进研究[J]. 岩石力学与工程学报, 2014, 33(7): 1336-1346. (LI Jian, GAO Yong-tao, XIE Yu-ling, et al. Improvement of microseism locating based on simplex method without velocity measuring[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1336-1346. (in Chinese))
    [16]
    李 楠, 王恩元, 孙珍玉, 等. 基于L1范数统计的单纯形微震震源定位方法[J]. 煤炭学报, 2014, 39(12): 2431-2438. (LI Nan, WANG En-yuan, SUN Zhen-yu, et al. Simplex microseismic source location method based on L1 norm statistical standard[J]. Journal of China Coal Society, 2014, 39(12): 2431-2438. (in Chinese))
    [17]
    GB17740—1999地震震级的规定[S]. 1999. (GB17740—1999 General rulers for earthquake magnitude[S]. 1999. (in Chinese))
    [18]
    李学政, 王海军, 雷 军. 近场震级起算函数确定与爆炸余震震级计算[J]. 中国地震, 2003, 19(2): 117-124. (LI Xue-zheng, WANG Hai-jun, LEI Jun. The calculation of calibration function and explosive aftershocks at the near field[J]. Earthquake Research in China, 2003, 19(2): 117-124. (in Chinese))
    [19]
    严尊国, 李普丽, 薛军蓉. 中国近震震级量规函数研究[J]. 中国地震, 1992, 8(4): 76-91. (YAN Zun-guo, LI Pu-li, XUE Jun-rong. Research on calibration functions for earthquakes in China[J]. Earthquake Research in China, 1992, 8(4): 76-91. (in Chinese))
    [20]
    贾宝新. 矿震监测的理论与应用研究[D]. 阜新: 辽宁工程技术大学, 2013. (JIA Bao-xin. Theory and application research of mine earthquake monitoring[D]. Fuxin: Liaoning Technical University, 2013. (in Chinese))
    [21]
    GE M. Comparison of least squares and absolute value methods in Ae/MS source location: a case study[J]. International Journal of Rock Mechanics & Mining Sciences,1997, 34(3/4): 93.e1-93.e7.
    [22]
    DREW J, WHITE R S, TILMANN F, et al. Coalescence microseismic mapping[J]. Geophysical Journal International, 2013, 195(3): 1773-1785.
    [23]
    LI X B, WANG Z W, DONG L J. Locating single-point sources from arrival times containing large picking errors (LPEs): the virtual field optimization method (VFOM)[J]. Scientific Reports, 2016, 6(19205): 1-12
    [24]
    山长仑, 张 玲, 李永红, 等. 对数字地震记录用速度与位移测定近震震级的讨论[J]. 华北地震科学, 2001, 19(4): 65-72. (SHAN Chang-lun, ZHANG Ling, LI Yong-hong, et al. Discussion about determining local earthquake magnitude with displacement and velocity obtained from digital records[J]. North China Earthquake Science, 2001, 19(4): 65-72. (in Chinese))
    [25]
    张楚旋, 李夕兵, 董陇军, 等. 微震监测传感器布设方案评价模型及应用[J]. 东北大学学报(自然科学版), 2016, 37(4): 594-608. (ZHANG Chu-xuan, LI Xi-bing, DONG Long-jun, et al. Evaluation model of microseismic monitoring sensor layout scheme and its application[J]. Journal of Northeastern University (Natural Science), 2016, 37(4): 594-608. (in Chinese))
    [26]
    赵国彦, 邓青林, 马 举. 基于 FSWT 时频分析的矿山微震信号分析与识别[J]. 岩土工程学报, 2015, 37(2): 306-312. (ZHAO Guo-yan, DENG Qing-lin, MA Ju. Analysis and recognition of mine microseismic signals based on FSWT time-frequency analysis[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 306-312. (in Chinese))
    [27]
    KIJKO A, DRZEZLA B, STANKIEWICZ T. Bimodal character of the distribution of extreme seismic events in Polish mines[J]. Acta Geophysica Polonica, 1987, 35: 157-166.
    [28]
    HOLUB K. Changes in the frequency-energy distribution of seismic events during mining in the Ostrava-Karviná coal field[J]. Studia Geophysica Et Geodaetica, 1999, 43(2): 147-162.
    [29]
    ZIELKE O, ARROWSMITH J R. Depth variation of coseismic stress drop explains bimodal earthquake magnitude-frequency distribution[J]. Geophysical Research Letters, 2008, 35(24): 101-106.
  • Related Articles

    [1]SHENG Zhi-qiang, TENG Yan-jing, LI Ping. Discussion on several problems in design of retaining structures of deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 94-101. DOI: 10.11779/CJGE202101011
    [2]XIONG Yi-bo, ZHONG Fang-ping, WANG Wan-peng, XIAO Wei-guo, WANG Lei-yuan, YANG Wen-xi, BAI You-liang, YANG Jin-chao. Structural design technology of reusable blast-resistant caverns in hard rock mass[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1759-1766. DOI: 10.11779/CJGE201909022
    [3]WANG Zong-jian, MA Shu-wen, TANG Xiao-shuang, WU Jin-ming, ZHI Xian-ping, LU Liang. Application of elastic cable theory in design of reinforced earth structure[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 122-129. DOI: 10.11779/CJGE201801012
    [4]LI Yuan-song, DUAN Xin, LI Yang, LI Xin-ping. Comparative research on design approaches on retaining structure for deep foundation pits in Chinese and European geotechnical design codes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 77-81. DOI: 10.11779/CJGE2014S2013
    [5]LI Ling, CHENG Shao-ping, WANG Bin, GAO Xu, LIU Xian-wu. Design and construction monitoring of supporting structures for foundation pit of Lefutianxia Building in Xiangyang[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk1): 132-137. DOI: 10.11779/CJGE2014S1023
    [6]TANG Jun. Design and analysis of retaining structures for a super-deep excavationin Shanghai using late-dismantling support[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 451-455.
    [7]CHEN Fu-qiang, YANG Guang-hua, ZHANG Yu-cheng, YAO Li-na. Discussion on value of coefficient in structural design of circular diaphragm wall[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 203-206.
    [8]Determination of design depth of soil-nailing protection structures[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5).
    [9]YUAN Jinrong, ZHOU Yuqian, LIU Xuezeng, YU Ning. Structural design of lining and parameter analysis for DOT shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 638-641.
    [10]Pon Jia-zheng. Design of Substructures and the Application of Finite Element Method[J]. Chinese Journal of Geotechnical Engineering, 1980, 2(4): 34-48.
  • Cited by

    Periodical cited type(2)

    1. 吴学震,姜杰,李大勇,蒋宇静. 深水注浆锚设计原理及其承载特性试验研究. 岩土力学. 2022(10): 2707-2716 .
    2. 刘金龙,祝磊,姚军,肖赟. 基于鱼雷锚施工的海洋组合式锚泊基础. 安徽建筑. 2021(05): 92-94 .

    Other cited types(5)

Catalog

    Article views (334) PDF downloads (340) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return