• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Kun-yong, LI Guang-shan, MEI Xiao-hong, DU Wei. Stress-deformation characteristics of silty soil based on K0 consolidation and drainage unloading stress path tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1182-1188. DOI: 10.11779/CJGE201707003
Citation: ZHANG Kun-yong, LI Guang-shan, MEI Xiao-hong, DU Wei. Stress-deformation characteristics of silty soil based on K0 consolidation and drainage unloading stress path tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1182-1188. DOI: 10.11779/CJGE201707003

Stress-deformation characteristics of silty soil based on K0 consolidation and drainage unloading stress path tests

More Information
  • Received Date: April 04, 2016
  • Published Date: July 24, 2017
  • Based on different initial stress states and unloading stress ratios, the unloading stress path drainage tests under K0 consolidation are carried out on the silty clay sampled from the construction site of the South-to-North Water Diversion Project. The specimens are firstly consolidated with a given value of K0 under different confining pressures. Then, to simulate the stress path at different locations of excavation soil, the stress decrements are applied from both the axial and the radial directions with different stress ratios. The test results show that the stress-strain behavior of soil is closely related to the stress path. Under different unloading stress ratios, the specimen may be compressed, elongated firstly and then compressed or elongated. The critical value of unloading stress ratio determining compression and extension is determined by the initial consolidation state and soil properties. With the decrement of the unloading stress ratio, the value of volume dilation increases. The tests also verify that the loading mode and stress path have little effect on the strength parameters. The characteristics observed from the tests are significantly different from those of the conventional triaxial test results. It is necessary to develop a proper constitutive model, which can describe the unloading stress path of the soil, and to carry out the stress and deformation analysis of the excavation soil.
  • [1]
    张艳刚, 张坤勇, 史峤臻. 开挖卸荷土体本构模型研究方法[J]. 水利与建筑工程学报, 2010, 8(4): 40-43. (ZHANG Yan-gang, ZHANG Kun-yong, SHI Qiao-zhen. Research method of constitutive model for excavation unloading soil mass[J]. Journal of Water Resources and Architectural Engineering, 2010, 8(4): 40-43. (in Chinese))
    [2]
    童华炜, 邓袆文. 土体 K 0 固结-卸荷剪切试验研究[J]. 工程勘察, 2008(5): 13-16. (TONG Hua-wei, DENG Hui-wen. K 0 consolidation drained shear and unloading tests of soil[J]. Geotechnical Investigation & Surveying, 2008(5): 13-16. (in Chinese))
    [3]
    马晓文, 艾英钵. 基坑开挖土体卸荷特性研究进展[J]. 岩土工程学报, 2011, 33(增刊1): 189-193. (MA Xiao-wen, AI Ying-bo. Review of soil behaviors under excavation unloading of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 189-193. (in Chinese))
    [4]
    LAMBE T W. Stress path method[J]. J of soil Mech and Found Div, ASCE, 1967, 93(6): 268-277.
    [5]
    NAGARAJ T S, SRIDHARAN M K. A incremental loading device for stress path and strength testing of soils[J]. Geotechnical Testing Journal, 1981, 4(2): 154-160.
    [6]
    王瑞红, 李建林, 蒋昱州, 等. 开挖卸荷对砂岩力学特性影响试验研究[J]. 岩土力学, 2010, 31(增刊1): 156-162, 206. (WANG Rui-hong, LI Jian-lin, JIANG Yu-zhou, et al. Experimental study of influence of excavation unloading on mechanical properties of sandstone[J]. Rock and Soil Mechanics, 2010, 31(S1): 156-162, 206. (in Chinese))
    [7]
    刘国彬, 侯学渊. 软土基坑隆起变形的残余应力分析法[J].地下工程与隧道, 1996, 14(2): 2-7. (LIU Guo-bin, HOU Xue-yuan. Residual stress analysis method of foundation pit in soft soil foundation pit[J]. Underground Engineering and Tunnels, 1996, 14(2): 2-7. (in Chinese))
    [8]
    郑卫锋, 邵龙潭, 贾金青. 基于数字图像测量技术的基坑开挖卸荷试验研究[J].岩土力学, 2003, 24(1): 17-20. (ZHENG Wei-feng, SHAO Long-tan, JIA Jin-qing. Experimental study on excavation unloading of foundation pit based on digital image measurement technique[J]. Rock and Soil Mechanics, 2003, 24(1): 17-20. (in Chinese))
    [9]
    梅国雄, 陈 浩, 卢廷浩, 等. 坑侧土体卸荷的侧向应力-应变关系研究[J]. 岩石力学与工程学报, 2010, 29(1): 3108-3112. (MEI Guo-xiong, CHEN Hao, LU Ting-hao, et al. Research on lateral stress-strain relation on side of foundation pit with lateral unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(1): 3108-3112. (in Chinese))
    [10]
    曾玲玲, 陈晓平. 软土在不同应力路径下的力学特性分析[J]. 岩土力学, 2009, 30(5): 1264-1270. (ZENG Ling-ling, CHEN Xiao-ping. Analysis of mechanical characteristics of soft soil under different stress paths[J]. Rock and Soil Mechanics, 2009, 30(5): 1264-1270. (in Chinese))
    [11]
    陈林靖, 戴自航, 刘志伟. 应力路径对软土应力-应变特性影响试验研究[J]. 岩土力学, 2011, 32(11): 3249-3257. (CHEN Lin-jing, DAI Zi-hang, LIU Zhi-wei. Experimental study of stress path of soft soils in influence range of foundation pit[J]. Rock and Soil Mechanics, 2011, 32(11): 3249-3257. (in Chinese))
    [12]
    殷 杰, 刘夫江, 刘 辰, 等. 天然沉积粉质黏土的应力路径试验研究[J]. 岩土力学, 2013, 34(12): 3389-3393. (YIN Jie, LIU Fu-jiang, LIU Chen, et al. Stress path tests on natural sedimentary silty clay[J]. Rock and Soil Mechanics, 2013, 34(12): 3389-3393. (in Chinese))
    [13]
    张春进, 陈 斌, 姚燕明. 宁波淤泥质黏土应力路径试验研究[J]. 工程勘察, 2016(1): 5-11. (ZHANG Chun-jin, CHEN Bin, YAO Yan-ming. Experimental study on stress path of Ningbo soft clay[J]. Geotechnical Investigation & Surveying, 2016(1): 5-11. (in Chinese))
    [14]
    曾国熙, 潘秋元, 胡一峰. 软黏土地基基坑开挖性状的研究[J]. 岩土工程学报, 1988, 10(3): 13-22. (ZENG Guo-xi, PAN Qiu-yuan, HU Yi-feng. The behavior of excavation in soft clay ground[J]. Chinese Journal of Geotechnical Engineering, 1988, 10(3): 13-22. (in Chinese))
    [15]
    施建勇, 雷国辉, 艾英钵, 等. 土压力变化规律的应力路径三轴试验研究[J]. 岩土力学, 2005, 26(11): 1700-1704. (SHI Jian-yong, LEI Guo-hui, AI Ying-bo, et al. Stress path controlled triaxial experimental study of lateral earth pressure behaviour[J]. Rock and Soil Mechanics, 2005, 26(11): 1700-1704. (in Chinese))
    [16]
    王保田. 土工测试技术[M]. 南京:河海大学出版社, 2005. (WANG Bao-tian. Principle of Geotechnical testing[M]. Nanjing: Hohai University Press, 2005. (in Chinese))
    [17]
    杨雪强, 朱志政, 韩高升, 等. 不同应力路径下土体的变形特性与破坏特性[J]. 岩土力学, 2006, 27(12): 2181-2185. (YANG Xue-qiang, ZHU Zhi-zheng, HAN Gao-sheng, et al. Deformation and failure characteristics of soil mass under different stress paths[J]. Rock and Soil Mechanics, 2006, 27(12): 2181-2185. (in Chinese))
    [18]
    郑 刚, 颜志雄, 雷华阳, 等. 天津市第一海相层粉质黏土卸荷变形特性的试验研究[J]. 岩土力学, 2008, 29(5): 1237-1239. (ZHENG Gang, YAN Zhi-xiong, LEI Hua-yang, et al. Experimental studies on unloading deformation properties of silty clay of first marine layer in Tianjin urban area[J]. Rock and Soil Mechanics, 2008, 29(5): 1237-1239. (in Chinese))
  • Related Articles

    [1]Prediction of Elastic Modulus and Uniaxial Compression Failure of Basalt Based on Nanoindentation Experiment and Upscaling methods[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240541
    [2]LIU Xian, YANG Zhen-hua, MEN Yan-qing. Temporal variation laws of longitudinal stress on cross section of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 188-193. DOI: 10.11779/CJGE202101022
    [3]WEI Ran, WU Shuai-feng, WANG Xiao-gang, CAI Hong. Theoretical basis and application verification of scale effects of deformation characteristics of rockfill[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 161-166,213. DOI: 10.11779/CJGE2020S1032
    [4]LIANG Fa-yun, JIA Ya-jie, DENG Hang, YAO Xiao-qing. Discussions on elastic parameters of soil for land subsidence caused by decompression of confined aquifer in deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 29-32. DOI: 10.11779/CJGE2017S2008
    [5]YANG Guang-hua, HUANG Zhi-xing, LI Zi-yun, JIANG Yan, LI De-ji. Simplified method for nonlinear settlement calculation in soft soils considering lateral deformation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1697-1704. DOI: 10.11779/CJGE201709018
    [6]TONG Li-yuan, TU Qi-zhu, DU Guang-yin, CAI Guo-jun. Determination of confined compression modulus of soft clay using piezocone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 569-572.
    [7]WANG Li-yan, GAO Peng, CHEN Guo-xing, FU Ren-jian. Experimental study on deformation behavior and shear strength of mixed soil blended with steel slag[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 126-132.
    [8]YAN Dong-xu, XU Wei-ya, WANG Wei, SHI Chong, SHI An-chi, WU Guan-ye. Research of size effect on equivalent elastic modulus of columnar jointed rock mass[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 243-250.
    [9]MEN Kai, HE Keqiang, GUO Dong, SUN Linna, ZHANG Wen. Discussion on "Nonlinear settlement computation of the soil foundation with the undisturbed soil tangent modulus method"[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 309-310.
    [10]Shi Zhaoji, Feng Wanling, Zhang Zhanji. The Measurement of Dynamic Young's Modulus by Resonant Column Method[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(6): 25-32.
  • Cited by

    Periodical cited type(4)

    1. 史金权,王磊,张轩铭,赵航,吴秉阳,赵航行,刘汉龙,肖杨. 微生物加固钙质砂地基电阻率特性试验研究. 岩土工程学报. 2024(02): 244-253 . 本站查看
    2. 马乾玮,张洁雅,曹家玮,董晓强. 基于电阻率表征的固化镉污染土的力学特性. 太原理工大学学报. 2024(05): 823-831 .
    3. 张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 .
    4. 崔雪,田斌,卢晓春,熊勃勃,冯程鑫. 基于电阻率的滑坡土体含水率贝叶斯LSTM网络模型预测研究. 水电能源科学. 2022(03): 182-185 .

    Other cited types(15)

Catalog

    Article views (384) PDF downloads (307) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return