• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAO Wen-gui, HE Min, WANG Jiang-ying. Analytical method for stress of granular medium foundation under vertical load[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1165-1172. DOI: 10.11779/CJGE201707001
Citation: CAO Wen-gui, HE Min, WANG Jiang-ying. Analytical method for stress of granular medium foundation under vertical load[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1165-1172. DOI: 10.11779/CJGE201707001

Analytical method for stress of granular medium foundation under vertical load

More Information
  • Received Date: March 27, 2016
  • Published Date: July 24, 2017
  • The analytical method for stress of foundation under vertical load is an important basis of design and computation in foundation engineering. However, the existing methods cannot reflect the properties of granular media for foundation soils. Therefore, according to the current researches on stress transmission of granular media, firstly, supposing that the stress in a granular medium foundation under vertical point load always diffuses downward with a curve cone, an analytical problem for the stress of the granular medium foundation under vertical point load is converted into that of a curve cone under vertical point load at its top, and a stress-solving method for a curve cone is obtained by discussing the stress-solving method for a line cone, hence, an analytical method for the stress of the granular medium foundation under vertical point load is proposed. Then, an analytical method for the stress of the granular medium foundation under circular vertical uniform load is established by regarding the problem as the integral solution of the stress of the granular medium foundation under vertical point load, which can adequately report the characteristics of the granular media of foundation soils and shows obvious superiority to the Boussinesq solution. Finally, by simultaneously adopting the proposed analytical method and Boussinesq solution as well as the numerical analytical method with PFC3D, a comparative analysis of stress distribution in granular medium foundation under circular vertical uniform load is carried out, and it is indicated that the proposed method is reasonable and feasible.
  • [1]
    赵明华. 土力学与基础工程[M]. 武汉: 武汉理工大学出版社, 2000. (ZHAO Ming-hua. Soil mechanics and foundation engineering[M]. Wuhan: Wuhan University of Technology Press, 2000. (in Chinese))
    [2]
    JANSSEN H A. Versuche Über getreidedruck getreidedruk in silozellen[J]. Zeitshritt des Vereines Deutscher Ingenieure, 1895, 39(35): 1045-1049.
    [3]
    BOUCHAUD J P, CATES M E, CLAUDIN P. Stress distribution in granular media and nonlinear wave equation[J]. Journal de Physique I, 1995, 5(6): 639-656.
    [4]
    CATES M E, WITTMER J P, BOUCHAUD J P, et al. Development of stresses in cohesionless poured sand[J]. Philosophical Transactions of the Royal Society of London Series A, 1998, 356(1747): 2535-2560.
    [5]
    .DA SILVA M, RAJCHENBACH J. Stress transmission through a model system of cohesionless elastic grains[J]. Natrure, 2000, 406(6797): 708-710.
    [6]
    孙广忠. 岩体力学基础[M]. 北京: 科学出版社, 1983. (SUN Guang-zhong. Rock mass mechanics foundation[M]. Beijing: Science Press, 1983. (in Chinese))
    [7]
    GENG J, HOWELL D, LONGHI E, et al. Footprints in sand: the response of a granular material to local perturbations[J]. Physical Review Letters, 2001, 87(3): 035506-(1-4).
    [8]
    COPPERSMITH S N, LIUC H, MAJUMDAR S, et al. Model for force fluctuations in bead packs[J]. Physical Review E, 1996, 53(5): 4673-4685.
    [9]
    LIU C H, NAGEL S R, SCHECTER D A, et al. Force fluctuations in bead packs[J]. Science, 1995, 269(5223): 513-515.
    [10]
    MILLER B, O'HERN C, BEHRINGER R P. Stress fluctuations for continuously sheared granular materials[J]. Physical Review Letters. 1996, 77(15): 3110-3113.
    [11]
    MUETH D M, JAEGER H M, NAGEL S R. Force distribution in a granular medium[J]. Physical Review E, 1998, 57(3): 3164-3169.
    [12]
    RADJAI F, JEAN M, MOREAU J J, et al. Force distribution in dense two-dimensional granular systems[J]. Physical Review Letters, 1996, 77(2): 274-277.
    [13]
    韦珊珊. 土中应力分布传递规律的试验及测试技术研究[D]. 南宁: 广西大学, 2003. (WEI Shan-shan. Research on test, measuring and testing techniques of laws of stress distribution and transfer in soil[D]. Nanning: Guangxi University, 2003. (in Chinese))
    [14]
    代志宏, 吴 恒, 张信贵. 附加应力在土体中传递分布的细观模型[J]. 工程地质学报, 2004, 12(增刊): 73-78. (DAI Zhi-hong, WU Heng, ZHANG Xin-gui. The mesoscopic structure model of additional stress transfer in the soil[J]. Journal of Engineering Geology, 2004, 12(S0): 73-78. (in Chinese))
    [15]
    廖智强, 刘根保. 附加应力的概率式解答[J]. 岩土力学, 2015, 36(8): 2223-2227. (LIAO Zhi-qiang, LIU Gen-bao. Probabilistic solution to additional stress[J]. Rock and Soil Mechanics, 2015, 36(8): 2223-2227. (in Chinese))
    [16]
    刘 源, 缪馥星, 苗天德. 二维颗粒堆积体中力的传递与分布研究[J]. 岩土工程学报, 2005, 27(4): 468-473. (LIU Yuan, MIAO Fu-xing, MIAO Tian-de. Force distributions in two dimensional granular packs[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 468-473. (in Chinese))
    [17]
    蒋红英. 颗粒介质传力特性及其在岩土工程中的若干应用问题[D]. 兰州: 兰州大学, 2005. (JIANG Hong-ying. Transmission of force through granular matter and its several applications in geological engineering[D]. Lanzhou: Lanzhou University, 2005. (in Chinese))
    [18]
    蒋红英, 苗天德, 鲁进步. 二维颗粒堆中力传递的一个概率模型[J]. 岩土工程学报, 2006, 28(7): 881-885. (JIANG Hong-ying, MIAO Tian-de, LU Jin-bu. A probabilistic model for force transmission in two dimensional granular packs[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 881-885. (in Chinese))
    [19]
    孙其诚, 程晓辉, 季顺迎, 等. 岩土类颗粒物质宏-细观力学研究进展[J]. 力学进展, 2011, 41(3): 351-371. (SUN Qi-cheng, CHENG Xiao-hui, JI Shun-ying, et al. Advances in the micro-macro mechanics of granular soil materials[J]. Advances in Mechanics, 2011, 41(3): 351-371. (in Chinese))
    [20]
    李遇春. 弹性力学[M]. 北京: 中国建筑工业出版社, 2009. (LI Yu-chun. Elastic mechanics[M]. Beijing: China Architecture & Building Press, 2009. (in Chinese))
    [21]
    常 在, 杨 军, 程晓辉. 砂土强度和剪胀性的颗粒力学分析[J]. 工程力学, 2010, 27(4): 95-104. (CHANG Zai, YANG Jun, CHENG Xiao-hui. Granular mechanical analysis of the strength and dilatancy of sand[J]. Engineering Mechanics, 2010, 27(4): 95-104. (in Chinese))
  • Cited by

    Periodical cited type(11)

    1. 丁凡煜,孙伟,张盛友,张攀科,文瑶,蔡发雄,朱艾伦. 高炉粒化矿渣协同矿化封存CO_2对充填体强度影响机制分析. 高校化学工程学报. 2025(01): 157-166 .
    2. 闵凡路,申政,李彦澄,袁大军,陈健,李凯. 盾构淤泥质废弃黏土氧化镁固化-碳化试验及碳化机制研究. 岩土力学. 2024(02): 364-374 .
    3. 孔祥辉,梁允鹏,崔帅,王潇康,张思峰. 活性MgO碳化固化疏浚底泥的影响因素及作用机理. 建筑材料学报. 2024(07): 620-628 .
    4. 刘小金,吴超凡,甄西东,王亚平,赖雄. 固化剂及固化土耐久性研究现状浅析. 湖南交通科技. 2023(01): 43-47 .
    5. 金胜赫,王修山,吴越鹏. 矿渣-脱硫石膏-电石渣固化剂固化黏土的研究. 工程地质学报. 2023(02): 397-408 .
    6. 张鹤年,穆琳,席培胜,阚梦璇,胡彩云. 氧化镁碳化生土砌块微观结构研究进展. 安徽科技学院学报. 2022(02): 69-74 .
    7. 马学通,高德彬,雷颖,严耿升. 高含水率疏浚底泥固化及强度预测模型. 中国农村水利水电. 2022(09): 101-105 .
    8. 陈鑫,俞峰,洪哲明,潘黎芳,刘兴旺,李瑛. 新型GS固化土与水泥土的力学特性对比研究. 工程地质学报. 2022(04): 1111-1121 .
    9. 陈学军,班如龙,宋宇,李辉,潘宗源,王建强. 初始含水率对活性MgO碳化红黏土特性的影响. 中国科技论文. 2022(12): 1317-1324 .
    10. 董博闻,王修山,沈森杰. 基于正交试验的复合土壤固化剂配合比设计研究. 人民长江. 2021(09): 193-197 .
    11. 王伟,周航,李健,李娜. 碳化过程对水泥土力学特性影响的研究与评价. 铁道科学与工程学报. 2021(12): 3239-3246 .

    Other cited types(11)

Catalog

    Article views PDF downloads Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return