• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Kai, WANG Huan-ling, XU Wei-ya, XIA Ji. Experimental study on seepage characteristics of rock-like materials with consecutive and filling fractures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1130-1136. DOI: 10.11779/CJGE201706020
Citation: ZHAO Kai, WANG Huan-ling, XU Wei-ya, XIA Ji. Experimental study on seepage characteristics of rock-like materials with consecutive and filling fractures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1130-1136. DOI: 10.11779/CJGE201706020

Experimental study on seepage characteristics of rock-like materials with consecutive and filling fractures

More Information
  • Received Date: July 11, 2016
  • Published Date: June 24, 2017
  • 3D printing is used to produce different permeability structural surfaces, and rock-like samples are poured by moulds. The tests on permeability of rock-like samples with consecutive and filling fractures are carried out under loading and unloading pressures. The test system of gas permeability measurement for compact rock is applied in measuring the evolution of gas permeability of structural surface with different permeabilities under different confining pressures. The test results show that the permeabilities of samples with different filling fractures are different, but there is no difference in magnitude when the pressure changes. For example, under the confining pressure of 25 MPa, the permeabilities of samples with parallel fractures and combined fractures are the maximum and minimum values respectively. The variation curves of samples between permeability and pressure in loading process are higher than those in unloading process. The evolution of permeability of samples under different pressures is influenced by the geometrical characteristics of permeability structural surface. In the process of loading, the variation curves between stress sensitive coefficient and pressure of different samples change in a different trend. While in the process of unloading, the variation curves are almost the same and present a 'W' form, and the permeability stress sensitivity of rock-like samples with consecutive and filling fractures is influenced by the permeability structural surface.
  • [1]
    LOMIZE G M. Flow in fractured rocks[J]. Gosenergoizdat, Moscow, 1951, 127: 197.
    [2]
    LOUIS C, MAINI Y N. Determination of in-situ hydraulic parameters in jointed rock[J]. International Society of Rock Mechanics, Proceedings, 1970, 1: 1-19.
    [3]
    速宝玉, 詹美礼, 赵 坚. 仿天然岩体裂隙渗流的试验研究[J].岩土工程学报, 1995, 17(5): 19-24. (SU Bao-yu, ZHAN Mei-li, ZHAO Jian. Study on fracture seepage in the lmitative nature roke[J]. Chinese Journal of Geotechnical Engineering,1995, 17(5): 19-24. 4. (in Chinese))
    [4]
    许光祥, 张永兴, 哈秋舲. 粗糙裂隙渗流的超立方和次立方定律及其试验研究[J]. 水利学报, 2003(3): 74-79. (XU Guang-xiang, ZHANG Yong-xing, HA Qiu-ling. Super-cubic and sub-cubic law of rough fracture seepage and its experiments study[J]. Journal of Hydraulic Engineering, 2003(3): 74-79. (in Chinese))
    [5]
    田开铭. 裂隙水交叉流的水力特性[J].地质学报, 1986(2): 202-214. (TIAN Kai-ming. The hydraulic properties of crossing-flow in an intersected fracture [J]. Acta Geologica Sinica, 1986(2): 202-214. (in Chinese))
    [6]
    OLSSON R, BARTON N. An improved model for hydromechanical coupling during shearing of rock joints[J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(3): 317-329.
    [7]
    LEE H S, CHO T F. Hydraulic characteristics of rough fractures in linear flow under normal and shear load[J]. Rock Mechanics & Rock Engineering, 2002, 35(4): 299-318.
    [8]
    速宝玉, 詹美礼, 张祝添. 充填裂隙渗流特性试验研究[J].岩土力学, 1994, 15(4): 46-52. (SU Bao-yu, ZHAN Mei-li, ZHANG Zhu-tian. Experimental research of seepage characteristic for filled fracture[J]. Rock and Soil Mechanics, 1994, 15(4): 46-52. (in Chinese))
    [9]
    于 龙, 陶同康.岩体裂隙水流的运动规律[J]. 水利水运科学研究, 1997(3): 208-218. (YU Long, TAO Tong-kang. Law of flow movement for rock fractures[J]. Journal of Nanjing Hydraulic Research Institute, 1997(3): 208-218. (in Chinese))
    [10]
    刘才华, 陈从新, 付少兰. 充填砂裂隙在剪切位移作用下渗流规律的试验研究[J].岩石力学与工程学报, 2002, 21(10): 1457-1461. (LIU Cai-hua, CHEN Cong-xin, FU Shao-lan. Study on seepage characteristics of a single rock fracture under shear stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(10): 1457-1461. (in Chinese))
    [11]
    刘欣宇, 刘爱华, 李夕兵. 高围压条件下含充填裂隙类岩石水渗流试验研究[J]. 岩石力学与工程学报, 2012, 31(7): 1390-1398. (LIU Xin-yu, LIU Ai-hua, LI Xi-bing. Experimental study of permeability of rock-like material with filling fractures under high confining pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1390-1398. (in Chinese))
    [12]
    李夕兵, 贺显群, 陈红江. 渗透水压作用下类岩石材料张开型裂纹启裂特性研究[J]. 岩石力学与工程学报, 2012, 31(7): 1317-1324. (LI Xi-bing, HE Xian-qun, CHEN Hong-jiang. Experimental study of permeability of rock-like material with filling fractures under high confining pressure [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1317-1324. (in Chinese))
    [13]
    王环玲, 徐卫亚, 左 婧, 等. 低渗透岩石渗透率与孔隙率演化规律的气渗试验研究[J]. 水利学报, 2015, 46(2): 208-216. (WANG Huan-ling, XU Wei-ya, ZUO Jing, et al. Evolution law of the permeability and porosity for low-permeability rock based on gas permeability test[J]. Journal of Hydraulic Engineering, 2015, 46(2): 208-216. (in Chinese))
    [14]
    王环玲, 徐卫亚. 致密岩石渗透测试与渗流力学特性[M].北京: 科学出版社, 2015: 24-29. (WANG Huan-ling, XU Wei-ya. Permeability test of tight rock and the mechanical properties of porous flow[M]. Beijing: Science Press, 2015: 24-29. (in Chinese))
    [15]
    MILLER R J, LOW P F. Threshold gradient for water flow in clay systems[J]. Soil Science Society of America Journal, 1963, 27(6): 605-609.
    [16]
    MCKEE C R, BUMB A C, KOENIG R A. Stress-dependent permeability and porosity of coal[C]//International Coalbed Methane Symposium, University of Alabama, Tuscaloosa, Alabama. 1987: 183-193.
    [17]
    吴 凡, 孙黎娟, 何 江. 孔隙度、渗透率与净覆压的规律研究和应用[J]. 西南石油学院学报, 1999, 21(4): 23-25. (WU Fan, SUN Li-juan, HE Jiang. The research and application of permeability,porosity and net overburden pressure laws[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 1999, 21(4): 23-25. (in Chinese))
    [18]
    刘建军, 刘先贵. 有效压力对低渗透多孔介质孔隙度、渗透率的影响[J]. 地质力学学报, 2001, 7(1): 41-44. (LIU Jian-jun, LIU Xian-gui. The effect of effective pressure on porosity and permeability of low permeability porous media[J]. Journal of Geomechanics, 2001, 7(1): 41-44. (in Chinese))
    [19]
    黄远智, 王恩志. 低渗透岩石渗透率与有效围压关系的试验研究[J]. 清华大学学报 (自然科学版), 2007, 47(3): 340-343. (HUANG Yuan-zhi, WANG En-zhi. Experimental study of the laws between the effective confining pressure and rock permeability[J]. Journal of Tsinghua University (Science and Technology), 2007, 47(3): 340-343. (in Chinese))
    [20]
    黄远智, 王恩志. 低渗透岩石渗透率对有效应力敏感系数的试验研究[J]. 岩石力学与工程学报, 2007, 26(2): 410-414. (HUANG Yuan-zhi, WANG En-zhi. Experimental study on coefficient OF sensitiveness between percolation rate and effective pressure for low permeability rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 47(3): 410-414. (in Chinese))
    [21]
    熊 伟. 流固耦合渗流规律研究[D]. 北京: 中国科学院渗流力学研究所, 2002. (XIONG Wei. Study on fluid-solid cou0ping seepage law[D]. Beijing: Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, 2002. (in Chinese))
  • Related Articles

    [1]CUI Chunyi, XU Minze, XU Chengshun, ZHAO Jingtong, LIU Hailong, MENG Kun. Seismic fragility analysis of subway station structures considering statistical uncertainty of seismic demands[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 453-462. DOI: 10.11779/CJGE20230980
    [2]ZHANG Chenlong, ZHANG Dongming, HUANG Zhongkai, HUANG Hongwei. Resilience assessment method for subway stations considering uncertainty of seismic intensity[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 164-172. DOI: 10.11779/CJGE20231153
    [3]LI Jinqiang, ZHONG Zilan, SHEN Jiaxu, ZHANG Bu, ZHANG Yabo, DU Xiuli. Longitudinal seismic fragility analysis of utility tunnel structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1622-1631. DOI: 10.11779/CJGE20230397
    [4]DAI Xuan, MA Yunxiang, WEI Shaowei, WEI Peiyong, HUO Haifeng, CAI Degou, LI Zhao. Seismic performance analysis of frame beams-reinforced slope under different earthquake intensities[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 147-152. DOI: 10.11779/CJGE2023S20019
    [5]QIU Dapeng, CHEN Jianyun, WANG Wenming, CAO Xiangyu. Fragility analysis of underground large-scale frame structures considering seismic effects of vertical earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2537-2546. DOI: 10.11779/CJGE20221053
    [6]ZHEN Libin, SHI Yuebo, ZHONG Zilan, DU Xiuli, LUO Wenlin. Efficient seismic fragility of underground structures using endurance time analysis method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 777-784. DOI: 10.11779/CJGE20220188
    [7]MENG Chang, TANG Liang. Seismic fragility analysis of pile-supported wharf in nearshore liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2274-2282. DOI: 10.11779/CJGE202112014
    [8]ZHONG Zi-lan, SHEN Yi-yao, HAO Ya-ru, LI Li-yun, DU Xiu-li. Seismic fragility analysis of two-story and three-span metro station structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 916-924. DOI: 10.11779/CJGE202005014
    [9]JIN Cong-cong, CHI Shi-chun, NIE Zhang-bo. Seismic safety analysis of high earth-rockfill dams based on seismic deformational fragility[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 334-343. DOI: 10.11779/CJGE202002015
    [10]ZHU Hong-wei, YAO Ling-kan, LAI Jun. Seismic vulnerability assessment of gravity retaining walls based on performance[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 150-157. DOI: 10.11779/CJGE202001017

Catalog

    Article views (418) PDF downloads (335) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return