• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Lun-lun, CHU Xi-hua, XU Yuan-jie. Breakage behavior of sand under true triaxial stress based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 839-847. DOI: 10.11779/CJGE201705008
Citation: ZHOU Lun-lun, CHU Xi-hua, XU Yuan-jie. Breakage behavior of sand under true triaxial stress based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 839-847. DOI: 10.11779/CJGE201705008

Breakage behavior of sand under true triaxial stress based on discrete element method

More Information
  • Received Date: January 25, 2016
  • Published Date: May 24, 2017
  • A series of triaxial compression tests and true triaxial tests based on discrete element method are conducted numerically to investigate the particle breakage behavior of granular materials under triaxial stress conditions. The numerical investigation mainly focuses on the stress-strain behavior, the evolution of the particle-size distribution and relative breakage of the crushable granular assembly. As the confining pressure increases, it is found that the dilatancy and strain softening of granular assembly decrease, which is related to the increase in the particle breakage. Beyond a higher confining pressure, the volumetric dilatation starts to increase, caused by the increase of the particle breakage during consolidation. In true triaxial tests, the peak stress ratio decreases with the increasing intermediate principal stress ratio b. And the increase of b results in the decrease of dilatancy, which stems from the distinct increasing compaction caused by breakage with the increasing b. The internal friction angle φ decreases with the increasing confining pressure, which conforms to a logarithmic relationship, and φ increases first and then decreases with the increasing b, which conforms to the Lade-Duncan failure model. In addition, the increment of the increasing relative breakage declines with the increasing confining pressure and axial strain, which implies the existence of the optimum distribution of granular assembly. The relationship between the particle breakage and the total input energy during tests is found to conform to a unique hyperbolic correlation.
  • [1]
    NAKATA Y, HYDE A F L, HYODO M, et al. A probabilistic approach to sand particle crushing in the triaxial test[J]. Géotechnique, 1999, 49(5): 567-583.
    [2]
    LADE P V, YAMAMURO J A, BOPP P A. Significance of particle crushing in granular materials[J]. Journal of Geotechnical Engineering, 1996, 122(4): 309-316.
    [3]
    TARANTIONO A, HYDE A F L. An experimental investigation of work dissipation in crushable materials[J]. Géotechnique, 2005, 55(8): 575-584.
    [4]
    EZAOUI A, LECOMPTE T, DI BENEDETTO H, et al. Effects of various loading stress paths on the stress-strain properties and on crushability of an industrial soft granular material[J]. Granular Matter, 2011, 13: 283-301.
    [5]
    FRANCESCA C, GIULIA M B V, SARAH M S. Breakage of an artificial crushable material under loading[J]. Granular Matter, 2013, 15: 661-673.
    [6]
    ZHOU W, YANG L, MA G, et al. Macro-micro responses of crushable granular materials in simulated true triaxial tests[J]. Granular Matter, 2015, 17(4): 497-509.
    [7]
    周 伟, 刘 东, 马 刚, 等. 基于随机散粒体模型的堆石体真三轴数值试验研究[J]. 岩土工程学报, 2012, 34(4): 748-755. (ZHOU Wei, LIU Dong, MA Gang, et al. Numerical simulation of true triaxial tests on mechanical behaviors of rockfill based on stochastic granule model[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 748-755. (in Chinese))
    [8]
    楚锡华, 李锡夔. 离散颗粒多尺度分级模型与破碎模拟[J]. 大连理工大学学报, 2006, 46(3): 319-326. (CHU Xi-hua, LI Xi-kui. Hierarchical multi-scale discrete particle model and crushing simulation[J]. Journal of Dalian University of Technology, 2006, 46(3): 319-326. (in Chinese))
    [9]
    ZHOU L L, CHU X H. Evolution of anisotropy in granular materials: effect of particle rolling and particle crushing[J]. Strength of Materials, 2014, 46(2): 214-220.
    [10]
    BONO J D, MCDOWELL G R. DEM of triaxial tests on crushable sand[J]. Granular Matter, 2014, 16(4): 551-562.
    [11]
    MCDOWELL G R, HARIRECHE O. Discrete element modeling of soil particle fracture[J]. Géotechnique, 2002, 52(2): 131-135.
    [12]
    CHENG Y P, BOLTON M D, NAKATA Y. Crushing and plastic deformation of soils simulated using DEM[J]. Géotechnique, 2004, 54(2): 131-141.
    [13]
    BOLTON M D, NAKATA Y, CHENG Y P. Micro- and macro-mechanical behaviour of DEM crushable materials[J]. Géotechnique, 2008, 58(6): 471-480.
    [14]
    WANG J F, YAN H B. DEM analysis of energy dissipation in crushable soils[J]. Soils and Foundations, 2012, 52(4): 644-657.
    [15]
    WANG J F, YAN H B. On the role of particle breakage in the shear failure behavior of granular soils by DEM[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37: 832-854.
    [16]
    周 博, 黄润秋, 汪华斌, 等. 基于离散元法的砂土破碎演化规律研究[J]. 岩土力学, 2014, 35(9): 2709-2716. (ZHOU Bo, HUANG Run-qiu, WANG Hua-bin, et al. Study of evolution of sand crushability based on discrete elements method[J]. Rock and Soil Mechanics, 2014, 35(9): 2709-2716. (in Chinese))
    [17]
    MCDOWELL G R, BOLTON M D. On the micromechanics of crushable aggregates[J]. Géotechnique, 1998, 48(5): 667-579.
    [18]
    DAVIDGE R W. Mechanical behaviour of ceramics[M]. Cambridge: University of Cambridge Press, 1979.
    [19]
    YAMAMURO J A, LADE P V. Drained sand behavior in axisymmetric tests at high pressures[J]. Journal of Geotechnical Engineering, 1996, 2: 109-119.
    [20]
    孔德志, 张丙印, 孙 逊. 人工模拟堆石料颗粒破碎应变的三轴试验研究[J]. 岩土工程学报, 2009, 31(3): 464-469. (KONG De-zhi, ZHANG Bing-yin, SUN Xun. Triaxial tests on particle breakage strain of artificial rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 464-469. (in Chinese))
    [21]
    张家铭, 张 凌, 蒋国盛, 等. 剪切作用下钙质砂颗粒破碎试验研究[J]. 岩土力学, 2008, 29(10): 2789-2793. (ZHANG Jia-ming, ZHANG Lin, JIANG Guo-sheng, et al. Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008, 29(10): 2789-2793. (in Chinese))
    [22]
    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.
    [23]
    EINAV I. Beakage mechanics-part I: theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55: 1274-1297.
  • Cited by

    Periodical cited type(14)

    1. 姜淑印,李向阳,杨超,尹磊建,王佳奇,朱利勇. 考虑析水效应的PPGF浆液扩散规律与抗分散特征. 金属矿山. 2025(04): 43-53 .
    2. 蔡跃辉. 动水注浆堵漏技术研究现状与发展情况. 科技创新与应用. 2025(13): 177-180 .
    3. 李海燕,夏茂哲,张锟,张波,孙怀凤,赵国东,韩俊飞,刘功杰,贺恩磊. 岩溶凹陷式露天矿山大流量涌水治理技术. 煤炭科学技术. 2024(01): 267-279 .
    4. 林久卿,牛昊,刘致延,李晓亮,王彦哲,李召峰,陈经棚. 水泥基矽土注浆材料抗海水侵蚀性能研究. 防灾减灾工程学报. 2024(03): 551-559 .
    5. 付贵永,肖杨,史金权,周航,刘汉龙. 干湿循环下EICP联合黄原胶加固钙质粉土劣化特性试验研究. 岩土工程学报. 2024(11): 2341-2351 . 本站查看
    6. 陈亮,孙晨,王雷雨,邵晓妹,胡靖宇. 引水隧洞超前预处理灌浆材料研究与应用进展. 南水北调与水利科技(中英文). 2024(06): 1181-1188 .
    7. 雷华阳,施福硕,刘旭,崔溦. 砂性地层中植物胶改性泥浆性质及渗透成膜试验研究. 岩土工程学报. 2023(02): 394-401 . 本站查看
    8. 张胜杰,王鸥,王天亮,王林,刘松松. 黄原胶及瓜尔胶改良尾矿砂强度特性及微观机制. 工程地质学报. 2023(02): 441-448 .
    9. 周中,邓卓湘,鄢海涛,张俊杰. 岩溶区隧道新型绿色注浆材料试验研究. 铁道工程学报. 2023(07): 63-68 .
    10. 吴龙骥,吴志军,翁磊. 聚丙烯酸酯改性水泥注浆材料力学性能与微观结构研究. 力学与实践. 2023(05): 999-1009 .
    11. 夏冲,李传贵,冯啸,赵宏魁,张思峰,武剑峰. 水泥粉煤灰-改性水玻璃注浆材料试验研究与应用. 山东大学学报(工学版). 2022(01): 66-73+84 .
    12. 付宏渊,查焕奕,潘浩强,曾铃,刘杰. 生物聚合物改良预崩解炭质泥岩水稳性及冲刷试验研究. 中南大学学报(自然科学版). 2022(07): 2633-2644 .
    13. 张昊,胡相明,王伟,梁运涛,王兆喜,刘金举,白光星,赵艳云,吴明跃. 黄原胶和氧化镁改性黏土-水泥基新型喷涂堵漏风材料的制备及特征. 煤炭学报. 2021(06): 1768-1780 .
    14. 康正斌,李小强,巩越. 强渗透涌水地层注浆新材料的配制与工程特性研究. 新型建筑材料. 2021(12): 19-23 .

    Other cited types(16)

Catalog

    Article views PDF downloads Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return