• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIA Yuan-you, CHEN Chen, NI Qing. Pull-out mechanism of continuous ball shape anchors in transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 804-812. DOI: 10.11779/CJGE201705004
Citation: XIA Yuan-you, CHEN Chen, NI Qing. Pull-out mechanism of continuous ball shape anchors in transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 804-812. DOI: 10.11779/CJGE201705004

Pull-out mechanism of continuous ball shape anchors in transparent soil

More Information
  • Received Date: August 27, 2016
  • Published Date: May 24, 2017
  • A physical modelling system is developed to study the pull-out mechanism of embedded soil anchors using transparent soil and particle image velocimetry (PIV). In the system, two different continuous ball shape anchors are set in the experiment to observe displacement impact areas, soil displacement, load-displacement curve and shape and location of pull-out failure interface. After analyzing the ultimate bearing capacity and the failure mechanism of the soil anchors, a suggested method is given. From the results, based on the circumstances of this model, the maximum vertical displacement impact areas have direct relationship with the radius of the ball and the distance between the balls during pull-out of the soil anchors. The continuous ball shape soil anchors (type A and B) can effectively provide 52% and 117% more force than the normal cylinder anchors. The pull-out force of the continuous ball shape soil anchors can be divided into three different parts: adhesion on shaft, end bearing in clay and cohesive through clay.
  • [1]
    CECS 22:90土层锚杆设计与施工规范[S]. 1990. (CECS 22:90 Code for design and construction of soil anchors[S]. 1990. (in Chinese))
    [2]
    郭 钢, 刘 钟, 杨 松, 等. 不同埋深扩体锚杆竖向拉拔破坏模式试验研究[J]. 工业建筑, 2012, 42(1): 123-127. (GUO Gang, LIU Zhong, YANG Song, et al. Model test research on failure modes of different embedded depth under reamed ground anchor under vertical pullout[J]. Industrial Construction, 2012, 42(1): 123-127. (in Chinese))
    [3]
    郭 钢, 刘 钟, 李永康, 等. 扩体锚杆拉拔破坏机制模型试验研究[J]. 岩石力学与工程学报, 2013, 32(8): 1677-1684. (GUO Gang, LIU Zhong, LI Yong-kang, et al. Model test research on failure mechanism of underreamed ground anchor[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1677-1684. (in Chinese))
    [4]
    李志刚, 任佰俪, 秦四清. 高压注浆土钉特性及应用[J].岩石力学与工程学报, 2004, 23(9): 1564-1567. (LI Zhi-gang, REN Bai-li, QIN Si-qing. Characteristics and applications of high-pressure grouting soil nailing[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(9): 1564-1567. (in Chinese))
    [5]
    张慧乐, 刘 钟, 徐龚鑫, 等. 扩体锚杆尺寸效应模型试验研究[J]. 岩土工程学报, 2010, 32(增刊1): 468-472. (ZHANG Hui-le, LIU Zhong, XU Yan-xin, et al. Model tests on size effect of underreamed ground anchors[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 468-472. (in Chinese))
    [6]
    胡建林, 张培文. 扩体型锚杆的研制及其抗拔试验研究[J].岩土力学, 2009, 30(6): 1615-1619. (HU Jian-lin, ZHANG Pei-wen. Development of underreamed anchor and experimental study of uplift resistance[J]. Rock and Soil Mechanics, 2009, 30(6): 1615-1619. (in Chinese))
    [7]
    赵明华, 龙 照, 邹新军. 基于剪胀效应的桩底嵌岩锚杆荷载传递分析法[J]. 岩土力学, 2008, 29(7): 1938-1942. (ZHAO Ming-hua, LONG Zhao, ZOU Xin-jun. Load transfer method of rock-socketed anchoring rods under pile tip considering dilatancy effect[J]. Rock and Soil Mechanics, 2008, 29(7): 1938-1942. (in Chinese))
    [8]
    黄明华, 周 智, 欧进萍. 拉力型锚杆锚固段拉拔受力的非线性全历程分析[J]. 岩石力学与工程学报, 2014, 33(11): 2190-2199. (HUANG Ming-hua, ZHOU Zhi, OU Jin-ping. Nonlinear full-range analysis of load transfer in fixedsegment of tensile anchors[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(11): 2190-2199. (in Chinese))
    [9]
    韩 军, 陈 强, 刘元坤, 等. 锚杆灌浆体与岩(土)体间的黏结强度[J]. 岩石力学与工程学报, 2005, 24(19): 3482-3486. (HAN Jun, CHEN Qiang, LIU Yuan-kun, et al. Bond strength between anchor grout and rock or soil masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(19): 3482-3486. (in Chinese))
    [10]
    陈昌富, 梁冠亭, 汤 宇, 等. 锚杆锚固体与土体界面特性室内测试新方法[J]. 岩土工程学报, 2015, 37(6): 1115-1122. (CHEN Chang-fu, LIANG Guan-ting, TANG Yu, et al. Anchoring solid-soil interface behavior using a novel laboratory testing technique[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1115-1122. (in Chinese))
    [11]
    KILIC A, YASAR E, ATIS C D. Effect of bar shape on the pull-out capacity of fully-grouted rockbolts[J]. Tunnelling and Underground Space Technology, 2003, 18: 1-6.
    [12]
    KILIC A, YASAR E, CELIK A G.. Effect of grout properties on the pull-out load capacity of fully grouted rock bolt[J]. Tunnelling and Underground Space Technology, 2002, 17: 355-362.
    [13]
    CHAI X J, HAYASHI S. Effect of constraineddilatancy on pull-out resistance of nails in sandy clay[J]. Ground Improvement, 2005, 9(3): 127-135.
    [14]
    夏元友, 陈 晨, NI Qing. 基于透明土的四种锚杆拔出对比模型试验[J]. 岩土工程学报, 2017, 39(3): 399-407. (XIA Yuan-you, CHEN Chen, NI Qing. Research on continuous ball shape anchorages pulling-out mechanism by using transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 399-407. (in Chinese))
    [15]
    HOVER E D, NI Q, GUYMER I. Investigation of centreline strain path during tube penetration using transparent soil and particle image velocimetry[J]. Géotechnique Letters, 2013(4): 37-41.
    [16]
    HIRD C C, NI Q, GUYMERI. Physical modelling of displacements around continuous flight augers in clay[C]// Proceedings of the 2nd BGA International Conference on Foundations. Dundee, 2008: 565-574.
    [17]
    LIU J, ISKANDER M G, SADEK, S. Consolidation and permeability of transparent amorphous silica[J]. Geotechnical Testing Journal, 2003, 26(4): 390-401.
    [18]
    ISKANDER M G, LIU J, SADEK S. Transparent amorphous silica to model clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(3): 262-273.
    [19]
    WHITE D J, TAKE W A, BOLTON, M.D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. Ge?otechnique, 2003, 53(7): 619-631.
    [20]
    曹兆虎, 孔纲强, 刘汉龙, 等. 基于PIV技术的沉桩过程土体位移场模型试验研究[J]. 工程力学, 2014, 31(8): 168-174. (CAO Zhao-hu, KONG Gang-qiang, LIU Han-long, et al. Model test on deformation characteristic of pile driving in sand using PIV technique[J]. Engineering Mechanics, 2014, 31(8): 168-174. (in Chinese))
    [21]
    曹兆虎, 孔纲强, 周 航, 等. 基于透明土材料的异形桩拔桩过程对比模型试验[J]. 铁道科学与工程学报, 2014, 11(3): 71-76. (CAO Zhao-hu, KONG Gang-qiang, ZHOU Hang, et al. Comparative experimentation on pulling process of profiled pile by using transparent soil[J]. Journal of Railway Science and Engineering, 2014, 11(3): 71-76. (in Chinese))
    [22]
    李元海, 朱合华, 靖洪文, 等. 基于数字照相的砂土剪切变形模式的试验研究[J]. 同济大学学报, 2007, 35(5): 685-689. (LI Yuan-hai, ZHU He-hua, JING Hong-wen, et al. Experimental investigation of shear deformation patterns in sands based on digital image correlation[J]. Journal of Tongji University, 2007, 35(5): 685-689. (in Chinese))
    [23]
    MURRAY E J, GEDDES J D. Uplift of plates in sand[J]. Journal of Geotechnical Engineering, ASCE, 1987, 113(3): 202-215.
    [24]
    LITTLEJOHN G S. Soil anchors[C]// Proceedings of Conference on Ground Engineering, ICE. London. 1970: 33-44.
    [25]
    JGJ/T 282—2012高压喷射扩大头锚杆技术规程[S]. 2012. (JGJ/T 282—2012 Technical specification for underreamed anchor by jet grouted[S]. 2012. (in Chinese))
    [26]
    BS 8081;1989.UDC 624.137.6. British standard code of practice for ground anchorages[S]. British Standards Institution, London, 1989.
  • Cited by

    Periodical cited type(13)

    1. 严辉,林沛元. 深圳市岩溶地层标准贯入击数神经网络模型. 地质科技通报. 2025(02): 305-321 .
    2. 李书兆,孙国栋,申辰,李文逵,罗进华,王教龙. 基于深度学习和地震数据的海上风电场CPT预测研究. 工程地球物理学报. 2025(02): 216-226 .
    3. 崔纪飞,柏林,饶平平,康陈俊杰,张锟. 基于人工智能算法的氯盐侵蚀混凝土预测模型. 硅酸盐通报. 2024(02): 439-447 .
    4. 段文魁,王来发,晁华俊,明锋. 冻结过程中土体导热系数预测模型. 中国农村水利水电. 2024(05): 47-52 .
    5. 唐少容,殷磊,杨强,柯德秀. 微胶囊相变材料改良粉砂土的导热系数及预测模型. 中国粉体技术. 2024(03): 112-123 .
    6. 姚兆明,王洵,齐健. 土体导热系数智能方法预测及影响因素敏感性分析. 工程热物理学报. 2024(05): 1440-1449 .
    7. 邓志兴,谢康,李泰灃,王武斌,郝哲睿,李佳珅. 基于粗颗粒嵌锁点高铁级配碎石振动压实质量控制新方法. 岩土力学. 2024(06): 1835-1849 .
    8. 李林,左林龙,胡涛涛,宋博恺. 基于孔压静力触探试验测试数据的原位固结系数物理信息神经网络反演方法. 岩土力学. 2024(10): 2889-2899 .
    9. 王红旗,李栋伟,钟石明,贾志文,王泽成,陈鑫,秦子鹏. 石灰改良红黏土导热系数影响因素及模型预测. 科学技术与工程. 2023(05): 2084-2092 .
    10. 王才进,武猛,蔡国军,赵泽宁,刘松玉. 基于多元分布模型预测土体热阻系数. 岩石力学与工程学报. 2023(S1): 3674-3686 .
    11. 王健翔,任瑞琪. 电学等效的稳态平板导热系数测试实验装置. 电子制作. 2023(11): 105-109 .
    12. 王才进,武猛,杨洋,蔡国军,刘松玉,何欢,常建新. 基于生物地理优化的人工神经网络模型预测软土的固结系数. 岩土力学. 2023(10): 3022-3030 .
    13. 徐明,康雅晶,马斯斯,张鹤. 基于贝叶斯优化的XGBoost模型预测路基回弹模量. 公路交通科技. 2023(11): 51-60 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return