• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHENG Gang, NIE Dong-qing, CHENG Xue-song, DIAO Yu, LIU Jie. Experimental study on multi-bench retaining foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 784-794. DOI: 10.11779/CJGE201705002
Citation: ZHENG Gang, NIE Dong-qing, CHENG Xue-song, DIAO Yu, LIU Jie. Experimental study on multi-bench retaining foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 784-794. DOI: 10.11779/CJGE201705002

Experimental study on multi-bench retaining foundation pit

More Information
  • Received Date: February 20, 2016
  • Published Date: May 24, 2017
  • In deep excavations with a large area of soft soil, the multi-bench retaining method, which has a short construction period and doesn’t need any horizontal reinforced concrete struts, can be used to replace the method with reinforced concrete struts. This method has been used in some regions of China. Because of the lack of researches on the multi-bench retaining method, a serious of model tests are designed to learn its work and failure mechanism. The main parameters, width of the bench between retaining piles B and length of the second retaining pile L2, are studied. The test results show that the multi-bench retaining structure has three kinds of failure modes, the overall overturning failure, the mutual-effect failure and the separate failure, according to different widths of the bench between retaining piles. The main differences of these failure mechanisms are the range of the slip surface and the stress condition of the soil between retaining piles. As the width of the bench increases, the deformation and moment of the retaining piles decease and have better stability. The second retaining pile will become the main retaining structure, which means that the second retaining pile bears a larger moment than the first one, with a long second retaining pile. The increase of L2 can also decrease the displacement of the first retaining pile and improve the stability.
  • [1]
    郑 刚, 郭一斌, 聂东清, 等. 大面积基坑多级支护理论与工程应用实践[J]. 岩土力学, 2014, 35(增刊2): 290-298. (ZHENG Gang, GUO Yi-bin, NIE Dong-qing, et al. Theory of multi-bench retaining for large area foundation pit and its engineering application[J]. Rock and Soil Mechanics, 2014, 35(S2): 290-298. (in Chinese))
    [2]
    任望东, 李春光, 田建平, 等. 软弱土中大面积深基坑工程快速支护施工技术[J]. 施工技术, 2013, 42(1): 35-39. (REN Wang-dong, LI Chun-guang, TIAN Jian-ping, et al. Rapid construction method of large area deep foundation excavation in soft soil[J]. Construction Technology, 2013, 42(1): 35-39. (in Chinese))
    [3]
    任望东, 张同兴, 张大明, 等. 深基坑多级支护破坏模式及稳定性参数分析[J]. 岩土工程学报, 2013, 35(增刊2): 919-922. (REN Wang-dong, ZHANG Tong-xing, ZHANG Da-ming, et al.Parametric analysis of failure modes and stability of multi-level retaining structure in deep excavations[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 919-922. ( in Chinese))
    [4]
    郑 刚, 程雪松, 刁 钰. 无支撑多级支护结构稳定性与破坏机理分析[J]. 天津大学学报, 2013, 46(4): 304-314. (ZHENG Gang, CHENG Xue-song, DIAO Yu. Analysis of the stability and collapse mechanism of non-prop and multi-stage retaining structure[J]. Journal of Tianjin University(Science and Technology), 2013, 46(4): 304-314. (in Chinese))
    [5]
    FRYDMAN S, KEISSAR I. Earth pressures on retaining walls near rock faces[J]. Journal of Geotechnical Engineering, ASCE, 1987, 113(6): 586-599.
    [6]
    TAKE W A, VALSANGKAR A J. Earth pressures on unyielding retaining walls of narrow backfill width[J]. Canadian Geotechnical Journal, 2001, 38(11): 1220-1230.
    [7]
    应宏伟, 黄 东. 临近既有地下室平动模式挡土墙主动土压力研究[J]. 固体力学学报, 2011, 32(增刊): 356-360. (YING Hong-wei, HUANG Dong. Study on active earth pressures on translation retaining wall adjacent to existing basements[J]. Chinese Journal of Solid Mechanics, 2011, 32(S0): 356-360.(in Chinese))
    [8]
    应宏伟, 黄 东, 谢新宇. 考虑邻近地下室外墙侧压力影响的平动模式挡土墙主动土压力研究[J]. 岩石力学与工程学报, 2011, 30(增刊1): 2970-2978. (YING Hong-wei, HUANG Dong, XIE Xin-yu. Study on active earth pressure on retaining wall subject to translation considering lateral pressure of adjacent existing basement wall[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 2970-2978. (in Chinese))
    [9]
    赵 琦, 朱建明. 临近地下室外墙影响下的考虑土拱效应的挡土墙主动土压力研究[J]. 岩土力学, 2014, 35(3): 723-728. (ZHAO Qi, ZHU Jian-ming. Research on active earth pressure behind retaining wall adjacent to existing basements exterior wall considering soil arching effects[J]. Rock and Soil Mechanics, 2014, 35(3): 723-728. (in Chinese))
    [10]
    金亚兵, 刘吉波. 相邻基坑土条土压力计算方法探讨[J]. 岩土力学, 2009, 30(12): 3750-3764. (JIN Ya-bing, LIU Ji-bo. Discussion on calculation method of earth pressure of earth-strip between neighboring excavations[J]. Rock and Soil Mechanics, 2009, 30(12): 3761-3764. (in Chinese))
    [11]
    申明亮, 廖少明, 邵 伟. 考虑内坑影响的坑中坑基坑被动土压力叠加算法[J]. 上海交通大学学报, 2012, 46(1): 79-83. (SHEN Ming-liang, LIAO Shao-ming, SHAO Wei. Superposition algorithm for the outer pit passive earth pressure influenced by inner pit for pit-in-pit[J]. Journal of Shanghai Jiaotong University, 2012, 46(1): 79-83. (in Chinese))
    [12]
    胡 辉, 汤连生, 林兴立, 等. 外坑支护结构转动时坑间被动区土拱效应分析[J]. 长江科学院院报, 2015, 32(4): 101-108. (HU Hui, TANG Lian-shegn, LIN Xing-li, et al. Soil arching effect in the passive zone between internal pit and extend pit when the other supporting structure rotates[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(4): 101-108. (in Chinese))
    [13]
    IAI S. Similitude for shaking table test on soil-structure-fluid model in 1- g gravitational field[J]. Soils and Foundations, 1989, 29(1): 105-118.
    [14]
    陆培毅, 严 驰, 顾晓鲁. 砂土基于室内模型试验土压力分布形式的研究[J]. 土木工程学报, 2003, 36(10): 84-88. (LU Pei-yi, YAN Chi, GU Xiao-lu. Sand model test on the distribution of earth pressure[J]. China Civil Engineering Journal, 2012, 46(1) : 79-83. ( in Chinese))
    [15]
    刘国楠, 胡荣华, 潘效鸿, 等. 衡重式桩板挡墙受力特性模型试验研究[J]. 岩土工程学报, 2013, 35(1): 103-110. (LIU Guo-nan, HU Rong-hua, PAN Xiao-hong, et al. Model tests on mechanical behaviors of sheet pile wall with relieving platform[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 103-110. (in Chinese))
    [16]
    HONG Y, NG C W W. Base stability of multi-propped excavations in soft clay subjected to hydraulic uplift[J]. Canadian Geotechnical Journal, 2013, 50(2): 153-164.
    [17]
    BOLTON M D, POWRIE W, SYMONS I F. The design of stiff in situ walls retaining overconsolidated clay: part 1 short-term behaviour[J]. Ground Engineering, 1990, 22(8): 44-48.
  • Related Articles

    [1]Prediction of Elastic Modulus and Uniaxial Compression Failure of Basalt Based on Nanoindentation Experiment and Upscaling methods[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240541
    [2]LIU Xian, YANG Zhen-hua, MEN Yan-qing. Temporal variation laws of longitudinal stress on cross section of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 188-193. DOI: 10.11779/CJGE202101022
    [3]WEI Ran, WU Shuai-feng, WANG Xiao-gang, CAI Hong. Theoretical basis and application verification of scale effects of deformation characteristics of rockfill[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 161-166,213. DOI: 10.11779/CJGE2020S1032
    [4]LIANG Fa-yun, JIA Ya-jie, DENG Hang, YAO Xiao-qing. Discussions on elastic parameters of soil for land subsidence caused by decompression of confined aquifer in deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 29-32. DOI: 10.11779/CJGE2017S2008
    [5]YANG Guang-hua, HUANG Zhi-xing, LI Zi-yun, JIANG Yan, LI De-ji. Simplified method for nonlinear settlement calculation in soft soils considering lateral deformation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1697-1704. DOI: 10.11779/CJGE201709018
    [6]TONG Li-yuan, TU Qi-zhu, DU Guang-yin, CAI Guo-jun. Determination of confined compression modulus of soft clay using piezocone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 569-572.
    [7]WANG Li-yan, GAO Peng, CHEN Guo-xing, FU Ren-jian. Experimental study on deformation behavior and shear strength of mixed soil blended with steel slag[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 126-132.
    [8]YAN Dong-xu, XU Wei-ya, WANG Wei, SHI Chong, SHI An-chi, WU Guan-ye. Research of size effect on equivalent elastic modulus of columnar jointed rock mass[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 243-250.
    [9]MEN Kai, HE Keqiang, GUO Dong, SUN Linna, ZHANG Wen. Discussion on "Nonlinear settlement computation of the soil foundation with the undisturbed soil tangent modulus method"[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 309-310.
    [10]Shi Zhaoji, Feng Wanling, Zhang Zhanji. The Measurement of Dynamic Young's Modulus by Resonant Column Method[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(6): 25-32.
  • Cited by

    Periodical cited type(4)

    1. 史金权,王磊,张轩铭,赵航,吴秉阳,赵航行,刘汉龙,肖杨. 微生物加固钙质砂地基电阻率特性试验研究. 岩土工程学报. 2024(02): 244-253 . 本站查看
    2. 马乾玮,张洁雅,曹家玮,董晓强. 基于电阻率表征的固化镉污染土的力学特性. 太原理工大学学报. 2024(05): 823-831 .
    3. 张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 .
    4. 崔雪,田斌,卢晓春,熊勃勃,冯程鑫. 基于电阻率的滑坡土体含水率贝叶斯LSTM网络模型预测研究. 水电能源科学. 2022(03): 182-185 .

    Other cited types(15)

Catalog

    Article views (519) PDF downloads (532) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return