• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Si-hong, SHAO Dong-chen, SHEN Chao-min, WANG Zi-jian. Microstructure-based elastoplastic constitutive model for coarse-grained materials[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 777-783. DOI: 10.11779/CJGE201705001
Citation: LIU Si-hong, SHAO Dong-chen, SHEN Chao-min, WANG Zi-jian. Microstructure-based elastoplastic constitutive model for coarse-grained materials[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 777-783. DOI: 10.11779/CJGE201705001

Microstructure-based elastoplastic constitutive model for coarse-grained materials

More Information
  • Received Date: January 30, 2016
  • Published Date: May 24, 2017
  • Considering the nonlinear characteristics of dilatancy and strength of coarse-grained materials, an elastoplastic constitutive model based on microstructures is established within the framework of classic elastoplastic theory. In the model, a yield function derived from the microstructure of granular materials is adopted,and a stress-dilatancy relationship is developed from the yield function with the non-associated flow rule. Based on the typical trixial compression test results of coarse-grained materials, a hardening parameter is proposed by introducing a compression model for cohesionless soils, which can describe both the dilantancy and the contraction of coarse-grained materials. The proposed model has 7 parameters, which can be determined by the conventional trixial compression tests and the isotropic compression tests. The proposed model is calibrated by modeling the trixial compression tests on three rockfill materials. It is found that the calculated values are in good agreement with the experimental data, indicating that the proposed model can reflect the stress and deformation characteristics of coarse-grained materials reasonably.
  • [1]
    秦红玉, 刘汉龙, 高玉峰, 等. 粗粒料强度和变形的大型三轴试验研究[J]. 岩土力学, 2004, 25(10): 1575-1580. (QIN Hong-yu, LIU Han-long, GAO Yu-feng, et al. Research on strength and deformation behavior of coarse aggregates based on large-scale triaxial tests[J]. Rock and Soil Mechanics, 2004, 25(10): 1575-1580. (in Chinese)
    [2]
    刘汉龙, 秦红玉, 高玉峰, 等. 堆石粗粒料颗粒破碎试验研究[J]. 岩土力学, 2005, 26(4): 562-566. (LIU Han-long, QIN Hong-yu, GAO Yu-feng, et al. Experimental study on particle breakage of rockfill and coarse aggregates[J]. Rock and Soil Mechanics, 2005, 26(4): 562-566. (in Chinese))
    [3]
    程展林, 丁红顺, 吴良平. 粗粒土试验研究[J]. 岩土工程学报, 2007, 29(8): 1151-1158. (CHENG Zhan-lin, DING Hong-shun, WU Liang-ping. Experimental study on mechanical behaviour of granular material[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1151-1158. (in Chinese))
    [4]
    杨 光, 孙 逊, 于玉贞,等. 不同应力路径下粗粒料力学特性试验研究[J]. 岩土力学, 2010, 31(4): 1118-1122. (YANG Guang, SUN Xun, YU Yu-zhen,et al. Experimental study of mechanical behavior of a coarse-grained material under various stress paths[J]. Rock and Soil Mechanics, 2010, 31(4): 1118-1122. (in Chinese))
    [5]
    丁树云, 蔡正银, 凌 华. 堆石料的强度与变形特性及临界状态研究[J]. 岩土工程学报, 2010, 32(2): 248-252. (DING Shu-yun, CAI Zheng-yin, LING Hua. Strength and deformation characteristics and critical state of rock fill[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2): 248-252. (in Chinese))
    [6]
    陈生水, 韩华强, 傅 华. 循环荷载作用下堆石料应力变形特性研究[J]. 岩土工程学报, 2010, 32(8): 1151-1157. (CHENG Sheng-shui, HAN Hua-qiang, FU Hua. Stress and deformation behaviors of rockfill under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1151-1157. (in Chinese))
    [7]
    ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. Yielding of clays in states wetter than critical[J]. Géotechnique, 1963, 8(2): 22-53.
    [8]
    ROSCOE K H,BURLAND J B. On the generalized stress-strainbehaviour of wet clay[M]. Cambridge:Cambridge University Press,1968:535-609.
    [9]
    姚仰平, 侯 伟, 罗 汀. 土的统一硬化模型[J]. 岩石力学与工程学报, 2009, 28(10): 2135-2151. (YAO Yang-ping, HOU Wei, LUO Ting. Unified hardening model for soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2135-2151. (in Chinese))
    [10]
    刘萌成, 高玉峰, 黄晓明. 考虑强度非线性的堆石料弹塑性本构模型研究[J]. 岩土工程学报, 2005, 27(3): 294-298. (LIU Meng-cheng, GAO Yu-feng, HUANG Xiao-ming. Study on elasto-plastic constitutive model of rockfills with nonlinear strength characteristics[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 294-298. (in Chinese))
    [11]
    孙海忠, 黄茂松. 考虑颗粒破碎的粗粒土临界状态弹塑性本构模型[J]. 岩土工程学报, 2010, 32(8): 1284-1290. (SUN Hai-zhong, HUANG Mao-song. Critical state elasto-plastic model for coarse granular aggregates incorporating particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1284-1290. (in Chinese))
    [12]
    ZIENKIEWICZ O C. Generalized plasticity and some models for geomechanics[J]. Applied Mathematics and Mechanics, 1982, 3(3): 303-318.
    [13]
    PASTOR M. A generalized plasticity model for anisotropic behavior of sand[J]. Computer Methods and Advances in Geomechanics, 1991, 1: 661-668.
    [14]
    PASTOR M, ZIENKIEWICZ O C, CHAN A H C. Generalized plasticity and the modelling of soil behavior[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14(3): 151-190.
    [15]
    陈生水, 傅中志, 韩华强, 等. 一个考虑颗粒破碎的堆石料弹塑性本构模型[J]. 岩土工程学报, 2011, 33(10): 1489-1496. (CHENG Sheng-shui, FU Zhong-zhi, HAN Hua-qiang, et al. An elastoplastic model for rockfill materials considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1489-1496. (in Chinese))
    [16]
    朱 晟, 魏匡民, 林道通. 筑坝土石料的统一广义塑性本构模型[J]. 岩土工程学报, 2014, 36(8): 1394-1399. (ZHU Sheng, WEI Kuang-min, LIN Dao-tong. Generalized plasticity model for soil and coarse-grained dam materials[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1394-1399. (in Chinese))
    [17]
    YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469.
    [18]
    YAO Y P, SUN D A, MATSUOKA H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path[J]. Computers and Geotechnics, 2008, 35(2): 210-222.
    [19]
    YAO Y P, YAMAMOTO H, WANG N D. Constitutive model considering sand crushing[J]. Soils and Foundations, 2008, 48(4): 603-608.
    [20]
    YAO Y P, SUN D A, LUO T. A critical state model for sands dependent on stress and density[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28: 323-337.
    [21]
    姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193-217. (YAO Yang-ping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193-217. (in Chinese))
    [22]
    SATAKE M. Fabric tensor in granular materials[C]// IUTAM Conference on Deformation and Flow of Granular Materials, 1982: 63-68.
    [23]
    谢定义, 齐吉琳. 土结构性及其定量化研究的新途径[J]. 岩土工程学报, 1999, 21(6): 651-656. (XIE Ding-yi, QI Ji-lin. Soil structure characteristics and new approach in research on its quantitative parameter[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 651-656. (in Chinese))
    [24]
    刘斯宏, 姚仰平, 孙其诚, 等. 基于细观结构的颗粒介质应力应变关系研究[J]. 科学通报, 2009, 54(11): 1496-1503. (LIU Si-hong, YAO Yang-ping, SUN Qi-cheng, et al. Microscopic study on stress-strain relation of granular materials[J]. Chinese Science Bulletin, 2009, 54(11): 1496-1503. (in Chinese))
    [25]
    LIU Si-hong, WANG Zi-jian, WANG Yi-shu, et al. A yield function for granular materials based on microstructures[J]. Engineering Computations, 2015, 32(4): 1006-1024.
    [26]
    沈珠江. 土的三重屈服面应力应变模式[J]. 固体力学学报, 1984, 5(2): 163-174. (SHEN Zhu-jiang. A stress strain model for soils with three yield surfaces[J]. Acta Mechanica Solida Sinica, 1984, 5(2): 163-174. (in Chinese))
    [27]
    YASUFUKU N, MURATA H, HYODO M, et al. A stress-strain relationship for anisotropically consolidated sand over a wide stress region[J]. Soils and Foundations, 1991, 31(4): 75-92.

Catalog

    Article views (532) PDF downloads (655) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return