• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Kun-yong, LI Wei, LUO Xing-jun, CHARKLEY Nai Frederick. Numerical experiments of microscopic mechanism of inherent anisotropy for sand based on PFC2D[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 518-524. DOI: 10.11779/CJGE201703016
Citation: ZHANG Kun-yong, LI Wei, LUO Xing-jun, CHARKLEY Nai Frederick. Numerical experiments of microscopic mechanism of inherent anisotropy for sand based on PFC2D[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 518-524. DOI: 10.11779/CJGE201703016

Numerical experiments of microscopic mechanism of inherent anisotropy for sand based on PFC2D

More Information
  • Received Date: January 04, 2016
  • Published Date: April 24, 2017
  • Through numerical simulation based on the particle flow method, DEM numerical test samples are generated in accordance with the results of laboratory tests on standard sand. Using gravity deposition modelling of irregular sand particles, samples of biaxial test assembled by long particle units are generated. Different steps of deposition are applied during the process of generating samples in order to simulate different inherent states of samples. The loads from the horizontal and vertical directions are respectively applied to samples. The numerical experimental results show that the gravitational deposits have significant impact on the major axis orientation arrangement of particles and the average coordination number. Also, there is a change in the macroscopic stress-strain curve and mechanical parameters acquired from the results of applying loads to the samples from the horizontal and vertical directions. The tested sand samples exhibit inherent mechanical anisotropy, which is closely associated with the internal structure properties and microscopic mechanical properties of sand.
  • [1]
    ARTHUR J R F, et al. Inherent anisotropy in a sand[J]. Géotechnique, 1972, 22(1): 115-128.
    [2]
    张坤勇. 考虑应力各向异性土体本构模型及应用研究[D].南京: 河海大学, 2004. (ZHANG Kun-yong. Study and application on soil's constitutive model with the consideration of stress-induced anisotropy[D]. Nanjing: Hohai University, 2004. (in Chinese))
    [3]
    ODA M, KOISHIKAWA I, HIGUCHI T. Experimental study of anisotropic shear strength of sand by plane strain test[J]. Soils and Foundations, 1978, 18(1): 25-38.
    [4]
    PENNINGTON D S, NASH D, LINGS M L. Anisotropy of G 0 shear stiffness in Gault Clay[J]. Géotechnique, 1997, 47(3): 391-398.
    [5]
    宋 飞. 考虑侧向变形的各向异性填土土压力计算方法及试验研究[D]. 北京: 清华大学, 2009. (SONG Fei. Evaluation and experimental study of earth pressure for anisotropic sand under any lateral deformation[D]. Beijing: Tsinghua University, 2009. (in Chinese))
    [6]
    张坤勇, 殷宗泽, 徐志伟. 土体各向异性的再认识[J]. 岩土工程技术, 2004, 18(1): 1-4. (ZHANG Kun-yong, YIN Zong-ze, XU Zhi-wei. Re-recognition of the soil's anisotrophy[J]. Geotechnical Engineering Technique, 2004, 18(1): 1-4. (in Chinese))
    [7]
    张坤勇, 殷宗泽, 梅国雄. 土体两种各向异性的区别与联系[J]. 岩石力学与工程, 2005, 24(9): 1599-1604. (ZHANG Kun-yong, YIN Zong-ze, MEI Guo-xiong. Difference and connection of two kinds of anisotropy of soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1599-1604. (in Chinese))
    [8]
    CUNDALL P A. A computer model for simulating progressive large scale movements in blocky rock systems[C]// Proceeding of Symposium of the International Society for Rock Mechanics. Nancy, 1971.
    [9]
    王永嘉, 邢纪波. 离散元法及其在岩土力学中的应用[M]. 辽宁: 东北大学出版社, 1991. (WANG Yong-jia, XING Ji-bo. Discrete element method and its applications in geomechanic[M]. Liaoning: Northeastern University Press, 1991. (in Chinese))
    [10]
    PROCOPIO A T, ZAVALIANGOS A. Simulation of multi-axial compaction of granular media from loose to high relative densities[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(7): 1523-1551.
    [11]
    池 永. 土的工程力学性质的细观研究-应力应变关系剪切带的颗粒流模拟[D]. 上海: 同济大学, 2002. (CHI Yong. A study of the mechanical properties of the soil a simulation of the particle flow in the shear zone of the stress-strain relationship[D]. Shanghai: Tongji University, 2002. (in Chinese))
    [12]
    周 健, 杨永香, 刘 洋. 饱和砂土液化过程中细观组构的模型试验研究[J]. 同济大学学报(自然科学版), 2009, 37(4): 466-470. (ZHOU Jian, YANG Yong-xiang, LIU Yang. Model testing of meso-fabric of saturated sand liquefaction[J]. Journal of Tongji University(Natural Science), 2009, 37(4): 466-470. (in Chinese))
    [13]
    李立青, 蒋明镜, 吴晓峰. 椭圆形颗粒堆积体模拟颗粒材料力学性能的离散元数值方法[J]. 岩土力学, 2011, 32(增刊1): 713-718. (LI Li-qing, JIANG Ming-jing, WU Xiao-feng. A developed discrete element model NS2D for simulating mechanical properties of elliptical particles assemblages[J]. Rock and Soil Mechanics, 2011, 32(S1): 713-718. (in Chinese))
    [14]
    蒋明镜, 彭 镝, 申志福, 等. 深海能源土剪切带形成机理离散元分析[J]. 岩土工程学报, 2013, 35(10): 1-7. (JIANG Ming-jing, PENG Di, SHEN Zhi-fu, et al. DEM analysis on formation of shear band of methane hydrate bearing soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1-7. (in Chinese))
    [15]
    童朝霞, 周 敏, 张连卫, 等. 各向异性颗粒材料双轴压缩试验的离散元数值模拟[J]. 岩石力学与工程学报, 2014, 33(增刊2): 4227-4232. (TONG Chao-xia, ZHOU Min, ZHANG Lian-wei, et al. Numerical modelling of biaxial compression tests for granular materials with inherent anisotropy using DEM[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 4227-4232. (in Chinese))
    [16]
    史旦达. 单调与循环加荷条件下砂土力学性质细观模拟[D]. 上海: 同济大学, 2007. (SHI Dan-da. Micromechanical simulations of sand behavior under monotonic and cyclic loading[D]. Shanghai: Tongji University, 2007. (in Chinese))
  • Related Articles

    [1]HOU Tianshun, ZHANG Jiancheng, SHU Bo. Model tests on earth pressure at rest of light weight soil behind rigid retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 764-773. DOI: 10.11779/CJGE20220928
    [2]HOU Tian-shun, GUO Peng-fei, YANG Kai-xuan, WANG Qi, LUO Ya-sheng. Characteristics and method for calculating earth pressure at rest of light weight soil with foamed particles[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2234-2244. DOI: 10.11779/CJGE202212010
    [3]ZHANG Kun-yong, LI Guang-shan, MEI Xiao-hong, DU Wei. Stress-deformation characteristics of silty soil based on K0 consolidation and drainage unloading stress path tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1182-1188. DOI: 10.11779/CJGE201707003
    [4]MO Wei-hong, CHEN Xiao-ping, LUO Qing-zi. Deformation of soft soils under constant stress ration consolidation with K0 [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 798-803.
    [5]JIA Ning. Coefficient of at-rest earth pressure from limited backfill[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1333-1337.
    [6]Cyclic shearing behavior of K0-consolidated clay and its rheological simulation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1946-1955.
    [7]Critical load of ground considering load embedded depth and variation of K0[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1930-1934.
    [8]YAO Yangping, HOU Wei. A unified hardening model for K0 overconsolidated clays[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 316-322.
    [9]WANG Lizhong, DAN Hanbo. Elastic viscoplastic constitutive model for K0-consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1344-1354.
    [10]WANG Lizhong, YE Shenghua, SHEN Kailun, HU Yayuan. Undrained shear strength of K0 consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 970-977.
  • Cited by

    Periodical cited type(12)

    1. 裘友强,张留俊,刘洋,刘军勇,尹利华. “双碳”背景下公路软土地基处理技术研究进展. 水利水电技术(中英文). 2025(01): 113-131 .
    2. 龙军,彭搏程. 基于桩周土围限失效的筋箍料粒桩复合地基承载力计算. 公路工程. 2025(01): 138-143 .
    3. 谭鑫,尹心,胡政博,裘钊辉,陈昌富. 筋箍碎石桩承载机制的三维离散-连续介质耦合数值模拟. 铁道学报. 2023(04): 139-147 .
    4. 王嘉鑫,纪明昌,郑俊杰,郑烨炜. 软土地基中包裹碎石桩地震动力响应数值模拟研究. 土木与环境工程学报(中英文). 2023(05): 58-65 .
    5. 郝耀虎,周杨,王闫超,刘少炜. 基于透明土技术的加筋碎石桩承载特性试验研究. 铁道科学与工程学报. 2023(12): 4582-4591 .
    6. 黄河,罗正东,李检保,罗彪. 竹筋格栅套筒加筋碎石桩承载力分析. 人民长江. 2022(06): 193-197 .
    7. 袁涌筌,赵明华,杨超炜,肖尧. 循环荷载下筋箍碎石桩复合地基动力特性数值分析. 湖南大学学报(自然科学版). 2022(11): 198-205 .
    8. 臧一平,刘聪. 考虑鼓胀和自重的散体材料桩复合地基承载力分析. 地基处理. 2021(06): 451-457 .
    9. 郑刚,周海祚. 复合地基极限承载力与稳定研究进展. 天津大学学报(自然科学与工程技术版). 2020(07): 661-673 .
    10. 李建喜,康超,李玉峰. 碎石桩处理软土地基的现状及趋势分析. 北方建筑. 2020(03): 60-63+67 .
    11. 邱梦瑶,陈树培,唐亮,凌贤长,张效禹,李雪伟,刘书幸. 加筋碎石桩复合饱和砂土地基抗液化性能评价方法. 地震研究. 2020(03): 554-562+603 .
    12. 姚志伟,张永艳. 筏板基础下碎石桩改良软土地基性能的数值研究. 河北工业科技. 2020(05): 359-365 .

    Other cited types(13)

Catalog

    Article views (536) PDF downloads (432) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return