• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZENG Peng, LIU Yang-jun, JI Hong-guang, LI Cheng-jiang. Coupling criteria and precursor identification characteristics of multi-band acoustic emission of gritstone fracture under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 509-517. DOI: 10.11779/CJGE201703015
Citation: ZENG Peng, LIU Yang-jun, JI Hong-guang, LI Cheng-jiang. Coupling criteria and precursor identification characteristics of multi-band acoustic emission of gritstone fracture under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 509-517. DOI: 10.11779/CJGE201703015

Coupling criteria and precursor identification characteristics of multi-band acoustic emission of gritstone fracture under uniaxial compression

More Information
  • Received Date: April 26, 2016
  • Published Date: April 24, 2017
  • In order to obtain the criteria and precursor characteristics of critical rock fracture, laboratory experiments on the characteristics of acoustic emission (AE) of gritstone specimens under uniaxial compression are carried out. The relationships between proportions of AE frequency bands and stresses in the process of rock failure are analyzed. The variation characteristics of proportions of two characteristic frequency bands with stresses are analyzed especially. The relevant fractal dimensions of AE amplitude at different stress levels are calculated and analyzed in the two frequency bands. A multi-band AE dominant frequency recognition criterion model is established based on the quantitative relationships between proportions of frequency bands and stresses. The results indicate that the distribution characteristics of the proportions of frequency bands can reflect the main failure stages of rock. In the process failure of rock, the proportions of AE lower frequency band signals (31.25~46.875 kHz) decrease firstly and then increase, and the proportions of AE higher frequency band signals (140.625~156.25 kHz) increase firstly and then decrease. The minimum value and the maximum value appear in the critical state of rupture in the lower and higher frequency bands. And the minimum values of the relevant fractal dimensions of AE amplitude appear in the critical state of rupture in the two frequency bands. Based on the coupling analysis of proportions of characteristic frequency bands and stresses, the accuracy for estimating and predicting the critical state of rock can be improved by using the variations of the proportions of characteristic frequency bands and the relevant fractal
  • [1]
    孙 强, 薛晓辉, 朱术云. 岩石脆性破坏临界信息综合识别[J]. 固体力学学报, 2013, 34(3): 311-319. (SUN Qiang, XUE Xiao-hui, ZHU Shu-yun. The identification method of critical information for rock brittle failure[J]. Chinese Journal of Solid Mechanics, 2013, 34(3): 311-319. (in Chinese))
    [2]
    KUI Z, ZHICHENG Z, PENG Z, et al. Experimental study on acoustic emission characteristics of phyllite specimens under uniaxial compression[J]. Journal of Engineering Science & Technology Review, 2015, 8(3): 53-60.
    [3]
    吴 刚, 翟松韬, 王 宇. 高温下花岗岩的细观结构与声发射特性研究[J]. 岩土力学, 2015, 36(增刊1): 351-356. (WU Gang, ZHAI Song-tao, WANG Yu. Research on characteristics of mesostructure and acoustic emission of granite under high temperature[J]. Rock and Soil Mechanics, 2015, 36(S1): 351-356. (in Chinese))
    [4]
    LEI X, FUNATSU T, MA S, et al. A laboratory acoustic emission experiment and numerical simulation of rock fracture driven by a high-pressure fluid source[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(1): 27-34.
    [5]
    曾 鹏, 纪洪广, 孙利辉, 等. 不同围压下岩石声发射不可逆性及其主破裂前特征信息试验研究[J]. 岩石力学与工程学报, 2016, 35(7): 1333-1340. (ZENG Peng, JI Hong-guang, SUN Li-hui, et al. Experimental study on characteristics of irreversibility and fracture precursors of acoustic emission in rock under different confining pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1333-1340. (in Chinese))
    [6]
    张朝鹏, 张 茹, 张泽天, 等. 单轴受压煤岩声发射特征的层理效应试验研究[J]. 岩石力学与工程学报, 2015, 34(4): 770-778. (ZHANG Zhao-peng, ZHANG Ru, ZHANG Ze-tian, et al. Experimental research on effects of bedding plane on coal acoustic emission under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 770-778. (in Chinese))
    [7]
    李庶林, 林朝阳, 毛建喜, 等. 单轴多级循环加载岩石声发射分形特性试验研究[J]. 工程力学, 2015, 32(9): 92-99. (LI Shu-lin, LIN Chao-yang, MAO Jian-xi, et al. Experimental study on fractal dimension characteristics of acoustic emission of rock under multilevel uniaxial cyclic loading[J]. Engineering Mechanics, 2015, 32(9): 92-99. (in Chinese))
    [8]
    杨永杰, 王德超, 郭明福, 等. 基于三轴压缩声发射试验的岩石损伤特征研究[J]. 岩石力学与工程学报, 2014, 33(1): 98-104. (YANG Yong-jie, WANG De-chao, GUO Ming-fu, et al. Study of rock damage characteristics based on acoustic emission tests under triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 98-104. (in Chinese))
    [9]
    纪洪广, 卢 翔. 常规三轴压缩下花岗岩声发射特征及其主破裂前兆信息研究[J]. 岩石力学与工程学报, 2015, 34(4): 694-702. (JI Hong-guang, LU Xiang. Characteristics of acoustic emission and rock fracture precursors of granite under conventional triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 694-702. (in Chinese))
    [10]
    刘建锋, 徐 进, 杨春和, 等. 盐岩拉伸破坏力学特性的试验研究[J]. 岩土工程学报, 2011, 33(4): 580-586. (LIU Jian-feng, XU Jin, YANG Chun-he, et al. Mechanical characteristics of tensile failure of salt rock[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 580-586. (in Chinese))
    [11]
    黄彦华, 杨圣奇. 饱水灰岩巴西试验准静态加载应变率效应研究[J]. 岩土工程学报, 2015, 37(5): 802-811. (HUANG Yan-hua, YANG Sheng-qi. Quasi-static loading strain rate effects on saturated limestone based on Brazilian splitting test[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 802-811. (in Chinese))
    [12]
    程立朝, 许 江, 冯 丹, 等. 岩石剪切破坏裂纹演化特征量化分析[J]. 岩石力学与工程学报, 2015, 34(1): 31-39. (CHENG Li-chao, XU Jiang, FENG Dan, et al. Quantitative analysis on development of surface cracks of rocks upon shear failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 31-39. (in Chinese))
    [13]
    SHKURATNIK V L, FILIMONOV Y L, KUCHURIN S V. Features of the Kaiser effect in coal specimens at different stages of the triaxial axisymmetric deformation[J]. Journal of Mining Science, 2007, 43(1): 1-7.
    [14]
    凌同华, 廖艳程, 张 胜. 冲击荷载下岩石声发射信号能量特征的小波包分析[J]. 振动与冲击, 2010, 29(10): 127-130. (LING Tong-hua, LIAO Yan-cheng, ZHANG Sheng. Application of wavelet packet method in frequency band energy distribution of rock acoustic emission signals under impact loading[J]. Journal of Vibration and Shock, 2010, 29(10): 127-130. (in Chinese))
    [15]
    赵 奎, 王更峰, 王晓军, 等. 岩石声发射Kaiser点信号频带能量分布和分形特征研究[J]. 岩土力学, 2008, 29(11): 3082-3088. (ZHAO Kui, WANG Geng-feng, WANG Xiao-jun, et al. Research on energy distributions and fractal characteristics of Kaiser signal of acoustic emission in rock[J]. Rock and Soil Mechanics, 2008, 29(11): 3082-3088. (in Chinese))
    [16]
    李 楠, 王恩元, 赵恩来, 等. 岩石循环加载和分级加载损伤破坏声发射实验研究[J]. 煤炭学报, 2010, 35(7): 1099-1103. (LI Nan, WANG En-yuan, ZHAO En-lai, et al. Experiment on acoustic emission of rock damage and fracture under cyclic loading and multi-stage loading[J]. Journal of China Coal Society, 2010, 35(7): 1099-1103. (in Chinese))
    [17]
    何满潮, 赵 菲, 张 昱, 等. 瞬时应变型岩爆模拟试验中花岗岩主频特征演化规律分析[J]. 岩土力学, 2015, 36(1): 1-33. (HE Man-chao, ZHAO Fei, ZHANG Yu, et al. Feature evolution of dominant frequency components in acoustic emissions of instantaneous strain-type granitic rockburst simulation tests[J]. Rock and Soil Mechanics, 2015, 36(1): 1-33. (in Chinese))
    [18]
    张艳博, 梁 鹏, 刘祥鑫, 等. 基于声发射信号主频和熵值的岩石破裂前兆试验研究[J]. 岩石力学与工程学报, 2015, 34(增刊1): 2959-2967. (ZHANG Yan-bo, LIANG Peng, LIU Xiang-xin, et al. Experimental study on precursor of rock burst based on acoustic emission signal dominant-frequency and entropy[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 2959-2967. (in Chinese))
    [19]
    赖于树, 熊 燕, 程龙飞. 受载混凝土破坏全过程声发射信号频带能量特征[J]. 振动与冲击, 2014, 33(10): 177-182. (LAI Yu-shu, XIONG Yan, CHENG Long-fei. Frequency band energy characteristics of acoustic emission signals in damage process of concrete under uniaxial compression[J]. Journal of Vibration and Shock, 2014, 33(10): 177-182. (in Chinese))
    [20]
    纪洪广, 乔 兰, 张树学, 等. 深部岩体稳定性评价的声发射-压力耦合模式[J]. 中国矿业, 2001, 10(2): 51-54. (JI Hong-guang, QIAO Lan, ZHANG Shu-xue, et al. Mode of acoustic emission coupled with pressure measurement to diagnose stability of deep rockmass[J]. China Mining Magazine, 2001, 10(2): 51-54. (in Chinese))
    [21]
    龚 囱, 李长洪, 赵 奎. 不同应力水平下红砂岩短时蠕变声发射特征[J]. 东北大学学报 (自然科学版), 2015, 36(9): 1347-1352. (GONG Cong, LI Chang-hong, ZHAO Kui. Acoustic emission characteristics during short-Time creep process of red sandstone under different stress level[J]. Journal of Northeastern University (Natural Science), 2015, 36(9): 1347-1352. (in Chinese))
    [22]
    苏国韶, 石焱炯, 冯夏庭, 等. 岩爆过程的声音信号特征研究[J]. 岩石力学与工程学报, 2016, 35(6): 1190-1201. (SU Guo-shao, SHI Yan-jiong, FENG Xia-ting, et al. Acoustic signal characteristics in rockburst process[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(6): 1190-1201. (in Chinese))
    [23]
    赵 奎, 闫道全, 钟春晖, 等. 声发射测量地应力综合分析方法与实验验证[J]. 岩土工程学报, 2012, 34(8): 1403-1411. (ZHAO Kui, YAN Dao-quan, ZHONG Chun-hui, et al. Comprehensive analysis method and experimental verification for in-situ stress measurement by acoustic emission tests[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1403-1411. (in Chinese))
    [24]
    李元辉, 刘建坡, 赵兴东, 等. 岩石破裂过程中的声发射b值及分形特征研究[J]. 岩土力学, 2009, 30(9): 2559-2563. (LI Yuan-hui, LIU Jian-po, ZHAO Xing-dong, et al. Study on b-value and fractal dimension of acoustic emission during rock failure process[J]. Rock and Soil Mechanics, 2009, 30(9): 2559-2563. (in Chinese))
    [25]
    尹贤刚, 李庶林, 唐海燕. 岩石破坏声发射强度分形特征研究[J]. 岩石力学与工程学报, 2005, 24(19): 3512-3516. (YIN Xian-gang, LI Shu-lin, TANG Hai-yan. Study on strength fractal features of acoustic emission in process of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(19): 3512-3516. (in Chinese))
    [26]
    张黎明, 任明远, 马绍琼, 等. 大理岩卸围压破坏全过程的声发射及分形特征[J]. 岩石力学与工程学报2015, 34(增刊1): 2862-2867. (ZHANG LI-ming, REN Ming-yuan, MA Shao-qiong, et al. Acoustic emission and fractal characteristics of marble during unloading failure process[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 2862-2867. (in Chinese))
    [27]
    丛 宇, 冯夏庭, 郑颖人, 等. 不同应力路径大理岩声发射破坏前兆的试验研究[J]. 岩土工程学报, 2016, 38(7): 1193-1201. (CHONG Yu, FENG Xia-ting, ZHENG Yin-ren, et al. Experimental study on acoustic emission failure precursors of marble under different stress paths[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1193-1201. (in Chinese))
  • Cited by

    Periodical cited type(27)

    1. 冯海华,陆勇,黄卉. 粗粒土与结构接触面的空间曲率效应试验研究. 土工基础. 2025(01): 122-126 .
    2. 胡达,肖超,梁小强,孔纲强,黎永索,蒋磊,杨仙. 考虑土拱效应的盾构隧道施工地表沉降预测. 工程地质学报. 2025(02): 783-793 .
    3. 唐昌意,李松,李智文,崔凯,樊军伟,秦晓同. 挡墙绕顶转动下的有限土体主动土压力研究. 中国公路学报. 2025(04): 43-53 .
    4. 刘光秀,党发宁,宋靖宇. 竖向分层土被动土压力的计算与分析. 应用基础与工程科学学报. 2024(03): 875-887 .
    5. 喻卫华. 考虑基坑坑内有限土体被动土压力研究. 市政技术. 2024(06): 75-80+134 .
    6. 张振波,黄安,周佳迪,刘志春,孙明磊. 基坑近接地铁车站主动土压力合力算法研究. 岩土工程学报. 2024(07): 1516-1524 . 本站查看
    7. 刘志春,马博,胡指南,张振波,杜孔泽. 邻近地下结构基坑主动土压力分布规律试验研究. 岩土力学. 2024(S1): 33-41 .
    8. 程振威,李又云,王传波. 减荷措施下高填涵洞竖向土压力计算. 地下空间与工程学报. 2024(06): 1790-1797 .
    9. 刘新喜,李彬,王玮玮,李松,贺程. 基于倾斜分层的挡墙主动土压力计算方法. 交通科学与工程. 2023(02): 41-48 .
    10. 张振波,周佳迪,孙明磊,刘志春,胡指南. 近接增建基坑有限土体土压力计算方法探究. 铁道科学与工程学报. 2023(06): 2091-2102 .
    11. 薛德敏,李天斌,张帅. 基于位移控制的双排桩桩后滑坡推力计算方法. 岩土工程学报. 2023(09): 1979-1986 . 本站查看
    12. 刘新喜,贺程,王玮玮,李彬. 放坡状态有限土体刚性挡墙滑动稳定性分析. 交通科学与工程. 2023(05): 37-44 .
    13. 刘杰锋,曹海莹,王优群,高艳斌. 考虑土拱效应的黏性土主动土压力解析解. 铁道科学与工程学报. 2023(12): 4604-4612 .
    14. 方焘,冉井念,刘春,张婷,徐翔. 考虑位移影响的有限土体基坑土压力研究. 重庆交通大学学报(自然科学版). 2022(01): 96-102+110 .
    15. 蔡忠伟,朱彦鹏,武开通,马响响,丁亚飞. 临河基坑有限成层土体主动土压力计算. 科学技术与工程. 2022(02): 666-675 .
    16. 赖丰文,刘松玉,杨大禹,程月红,范钦建. 有限宽度填土挡墙主动土压力的普适解法. 岩土工程学报. 2022(03): 483-491 . 本站查看
    17. 马明,李明东,郎钞棚,张京伍,万愉快. 刚性挡墙绕底转动时的非极限主动土压力数值解. 应用数学和力学. 2022(03): 312-321 .
    18. 刘新喜,李彬,王玮玮,贺程,李松. 基于主应力迹线分层的有限土体土压力计算. 岩土力学. 2022(05): 1175-1186 .
    19. 马明,李明东,张京伍,朱丽萍. 考虑层间剪应力的黏性土非极限主动土压力数值解. 广西大学学报(自然科学版). 2022(04): 854-861 .
    20. 吴垠龙,刘维,贾鹏蛟,史培新. 矩形顶管近距离上穿既有隧道施工扰动分析. 地下空间与工程学报. 2022(06): 1968-1978 .
    21. 关振长,黄金峰,何亚军,宁茂权. 基于极上限分析的临水深基坑围护结构主动土压力计算. 工程力学. 2022(11): 196-202+256 .
    22. 孙望成,张道兵,蒋瑾,蔚彪,尹华东. 考虑Hoek-Brown准则的挡土墙主动土压力. 吉首大学学报(自然科学版). 2021(01): 61-65 .
    23. 邵鹏,刘念武,房凯,黄栩,林强. 软土地区相邻深大基坑间有限土体土压力研究. 建筑施工. 2021(04): 691-695 .
    24. 王崇宇,刘晓平,张家强,曹周红. 刚性墙后有限宽度土体被动滑裂面特征试验研究. 岩土力学. 2021(07): 1839-1849+1860 .
    25. 王崇宇,刘晓平,曹周红,江旭,张家强. 刚性墙后有限宽度土体主动滑裂面特征试验研究. 岩土力学. 2021(11): 2943-2952 .
    26. 张常光,吴凯,隋建浩. 基于小主应力轨迹的上埋式涵管竖向土压力非线性描述. 岩土工程学报. 2021(12): 2200-2208 . 本站查看
    27. 陈建旭,钱波,郭宁,余明东,庄锦亮. 倾斜挡墙黏性填土非极限主动土压力计算. 长江科学院院报. 2021(12): 137-145 .

    Other cited types(47)

Catalog

    Article views PDF downloads Cited by(74)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return