• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIA Yuan-you, CHEN Chen, NI Qing. Comparative modelling of pull-out process of four different anchorages by using transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 399-407. DOI: 10.11779/CJGE201703002
Citation: XIA Yuan-you, CHEN Chen, NI Qing. Comparative modelling of pull-out process of four different anchorages by using transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 399-407. DOI: 10.11779/CJGE201703002

Comparative modelling of pull-out process of four different anchorages by using transparent soil

More Information
  • Received Date: December 17, 2015
  • Published Date: April 24, 2017
  • A small-scale physical modelling system is developed to study the pull-out mechanism of embedded soil nails based on transparent soil and particle image velocimetry (PIV). Four types of soil anchorages, common cylindrical anchorage, hand grenade shape anchorage, round bead string shape anchorage and Christmas-tree shape anchorage, are set in the experiment to observe the soil displacement impact areas and load-displacement curve. Then the maximum uplift capacity and the failure mechanism of soil anchorages are discussed. From the results, it is shown that before failure happens, all horizontal displacements of soil anchorages are relatively small compared to vertical displacements, except for the hand grenade shape anchorage. The vertical displacements of the round bead string shape anchorage and Christmas-tree shape anchorage have the larger vertical displacement impact area, and both reach 6.0R. The profiled anchorage can effectively provide 66%~91% more force than the normal cylinder anchorage, and the Christmas-tree shape anchorage has the largest uplift load. The anchorage length and effective radius are directly related with the anchorage pull-out resistance. The maximum uplift capacity happens between the pull-out starting and full failure of the soil-soil anchorage interface. When the soil-anchorage interface begins to fail, failure first occurs at the top of soil anchorage, then develops to the bottom along the soil anchorage body. Take soil anchorage type A for an example, when the failure develops 1/3 of its own length to its bottom, the uplift capacity reaches the peak value.
  • [1]
    CHEN C, TING R, CHERIS C. Calculation of the effect of Poisson's ratio in laboratory push and pull testing of resin-encapsulated bolts[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 64: 175-180.
    [2]
    KILIC A, YASAR E, ATIS C D. Effect of bar shape on the pull-out capacity of fully-grouted rockbolts[J]. Tunnelling and Unerground Space Technology, 2003, 18: 1-6.
    [3]
    MARTIN L B, TIJANI M, HADJ-HASSEN F, et al. Assessment of the bolt-grout interface behaviour of fully grouted rockbolts from laboratory experiments under axial loads[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 63: 50-61.
    [4]
    MA S, NEMCIK J, AZIZ N. An analytical model of fully grouted rock bolts subjected to tensile load[J]. Construction and Building Materials, 2013, 49: 519-526.
    [5]
    SU W, RICHARD J. Uplift testing of model anchors[J]. J Geotech Engrg, 1988, 114: 961-983.
    [6]
    ISKANDER M G, LIU J, SADEK S. Transparent amorphous silica to model clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(3): 262-273.
    [7]
    LIU J, ISKANDER M G, SADEK S. Consolidation and permeability of transparent amorphous silica[J]. Geotechnical Testing Journal, 2003, 26(4): 390-401.
    [8]
    NI Q, HIRD C C, GUYMER I. Physical modelling of pile penetration in clay using transparent soil and particle image velocimetry[J]. Ge?otechnique, 2010, 60(2): 121-132.
    [9]
    HIRD C C, NI Q, GUYMER I. Physical modelling of displacements around continuous flight augers in clay[C]// Proceedings of the 2nd BGA International Conference on Foundations. Dundee, 2008: 565-574.
    [10]
    孔纲强, 刘 璐, 刘汉龙, 等. 玻璃砂透明土变形特性三轴试验研究[J]. 岩土工程学报, 2013, 35(6): 1140-1146. (KONG Gang-qiang, LIU Lu, LIU Han-long, et al. Triaxial tests on deformation characteristics of transparent glass sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1140-1146. (in Chinese))
    [11]
    WHITE D J, TAKE W A, BOLTON M D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. Ge?otechnique, 2003, 53(7): 619-631.
    [12]
    RONALD J. ADRIAN. Particle-imaging techniques for experimental fluid mechanics[J]. Fluid Mech, 1991, 23: 261-304.
    [13]
    CHRISTIAN W. The fully digital evaluation of photographic piv recordings[J]. Applied Scientific Research, 1996, 56: 79-102.
    [14]
    WHITE D J, TAKE W A. Particle image velocimetry software for use in geotechnical testing[R]. Cambridge: Engineering Department of Cambridge University, Technical Report, D-SOILS-TR322.
    [15]
    HUANG H, DABIRI D, GHARIB M. On errors of digital particle image velocimetry[J]. Meas Sci Technol, 1997, 8: 14270-1440.
    [16]
    李元海, 朱合华, 靖洪文, 等. 基于数字照相的砂土剪切变形模式的试验研究[J]. 同济大学学报,2007, 35(5): 685-689. (LI Yuan-hai, ZHU He-hua, JING Hong-wen, et al. Experimental investigation of shear deformation patterns in sands based on digital image correlation[J]. Journal of Tongji University, 2007, 35(5): 685-689. (in Chinese))
    [17]
    曹兆虎, 孔纲强, 刘汉龙, 等. 基于PIV技术的沉桩过程土体位移场模型试验研究[J]. 工程力学, 2014, 31(8): 168-174. (CAO Zhao-hu, KONG Gang-qiang, LIU Han-long, et al. Model test on deformation characteristic of pile driving in sand using PIV technique[J]. Engineering Mechanics, 2014, 31(8): 168-174. (in Chinese))
    [18]
    齐昌广, 陈永辉, 王新泉, 等. 细长桩屈曲的透明土物理模型试验研究[J]. 岩石力学与工程学报, 2015, 34(4): 838-848. (QI Chang-guang, CHEN Yong-hui, WANG Xin-quan, et al. Physical modeling experiment on bucking of slender piles in transparent soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 838-848. (in Chinese))
    [19]
    孔纲强, 曹兆虎, 周 航, 等. 极限荷载下纵向截面异形桩破坏形式对比模型试验研究[J]. 岩土力学, 2015, 36(5): 1333-1338. (KONG Gang-qiang, CAO Zhao-hu, ZHOU Hang, et al. Comparative model tests on failure modes of piles with a variable longitudinal section under ultimate load[J]. Rock and Soil Mechanics, 2015, 36(5): 1333-1338. (in Chinese))
    [20]
    HOVER E D, NI Q, GUYMER I. Investigation of centreline strain path during tube penetration using transparent soil and particle image velocimetry[J]. Géotechnique Letters, 2013, (April-June): 37-41.
    [21]
    LIU J, ISKANDER M G, SADEK, S. Consolidation and permeability of transparent amorphous silica[J]. Geotechnical Testing Journal, 2003, 26(4): 390-401.
    [22]
    ISKANDER M G, LIU J, SADEK, S. Transparent amorphous silica to model clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(3): 262-273.
    [23]
    PRADHAN B, THAM L G, YUE Z Q, et al. Soil-nail pullout interaction in loose fill materials[J]. Int J Geomech, 2006, 6(4): 238-247.
    [24]
    曹兆虎, 孔纲强, 周 航, 等. 基于透明土材料的异形桩拔桩过程对比模型试验[J]. 铁道科学与工程学报, 2014, 11(3): 71-76. (CAO Zhao-hu, KONG Gang-qiang, ZHOU Hang, et al. Comparative experimentation on pulling process of profiled pile by using transparent soil[J]. Journal of Railway Science and Engineering, 2014, 11(3): 71-76. (in Chinese))
    [25]
    LITTLEJOHN G S. Soil anchors[C]// Proceedings of Conference on Ground Engineering, ICE. London, 1970: 33-44.
  • Cited by

    Periodical cited type(1)

    1. 梁靖宇,齐吉琳,张跃东,路德春,李昊雯. 考虑温度与围压影响的冻结砂土非正交弹塑性本构模型. 岩土工程学报. 2024(09): 1889-1898 . 本站查看

    Other cited types(5)

Catalog

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return