• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Zhong-xian, HUANG Lei, LIANG Jian-wen. FEM -IBIEM coupled method for simulating scattering of seismic waves by 3-D complex local site[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 301-310. DOI: 10.11779/CJGE201702014
Citation: LIU Zhong-xian, HUANG Lei, LIANG Jian-wen. FEM -IBIEM coupled method for simulating scattering of seismic waves by 3-D complex local site[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 301-310. DOI: 10.11779/CJGE201702014

FEM -IBIEM coupled method for simulating scattering of seismic waves by 3-D complex local site

More Information
  • Received Date: November 26, 2015
  • Published Date: March 24, 2017
  • A hybrid technique, FEM-IBIEM is developed for studying the scattering of seismic waves by a 3-D complex local site. The indirect boundary integral equation method (IBIEM) adopts the dynamic Green's functions of concentrated loads for a layered half-space. It can accurately satisfy the radiation condition of waves in semi-infinite layered media and greatly reduce the computational memory. For the local site with complex materials and geometric features, FEM is more convenient. Based on accuracy tests and taking the seismic wave scattering resulting from 3-D sedimentary basins and mountains as the example, the adaptability of the proposed method for the seismic response in the complex local site is conformed, and several beneficial conclusions about the 3-D sedimentary basin effects and mountain vibration are drawn. This method can be used for studying the scattering of elastic waves by arbitrary inhomogeneous site in layered half-space.
  • [1]
    TRIFUNAC M D. Surface motion of a semi-cylindrical alluvial valley for incident plane SH waves[J]. Bull Seism Soc Am, 1971, 61: 1755-1770.
    [2]
    YUAN X M, LIAO Z P. Scattering of plane SH waves by a cylindrical alluvial valley of circular-arc cross-section[J]. Earthquake Eng Struct Dyn, 1995, 24(10): 1303-1313.
    [3]
    梁建文, 张秋红, 李方杰. 浅圆沉积谷地对瑞雷波的散射—高频解[J]. 地震学报, 2006, 28(2): 176-182. (LIANG Jian-wen, ZHANG Qiu-hong, LI Fang-jie. Scattering of Rayleigh waves by a shallow circular alluvial valley: high-frequency solution[J]. Acta Seismologica Sinica, 2006, 28(2): 176-182. (in Chinese))
    [4]
    赵成刚, 韩 铮. 半球形饱和土沉积谷场地对入射平面 Rayleigh 波的三维散射问题的解析解[J]. 地球物理学报, 2007, 50(3): 905-914. (ZHAO Cheng-gang, HAN Zheng. Three-dimensional scattering and diffraction of plane Rayleigh-waves by a hemispherical alluvial valley with saturated soil deposit[J]. Chinese J Geophys, 2007, 50(3): 905-914. (in Chinese))
    [5]
    周国良, 李小军, 侯春林, 等. SV 波入射下河谷地形地震动分布特征分析[J]. 岩土力学, 2012, 33(4): 1161-1166. (ZHOU Guo-liang, LI Xiao-jun, HOU Chun-lin, et al. Characteristic analysis of ground motions of canyon topography under incident SV seismic waves[J]. Rock and Soil Mechanics, 2012, 33(4): 1161-1166. (in Chinese))
    [6]
    BAO H, BIELAK J, GHATTAS O, et al. Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 152(1): 85-102.
    [7]
    丁海平, 刘启方, 金 星. 长周期地震动三维有限元数值模拟方法[J]. 地震工程与工程振动, 2006, 26(5): 27-31. (DING Hai-ping, LIU Qi-fang, JIN Xing. A method of numerical simulation for long-period strong ground motion by3-D FEM[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(5): 27-31. (in Chinese))
    [8]
    陈国兴, 金丹丹, 朱 姣, 等. 河口盆地非线性地震效应及设计地震动参数[J]. 岩土力学, 2015, 36(6): 1721-1736. (CHEN Guo-xing, JIN Dan-dan, ZHU Jiao, et al. Nonlinear seismic response of estuarine basin and design parameters of ground motion[J]. Rock and Soil Mechanics, 2015, 36(6): 1721-1736. (in Chinese))
    [9]
    FRANKEL A, VIDALE J. A three-dimensional simulation of seismic waves in the Santa Clara Valley, California, from a Loma Prieta aftershock[J]. Bull Seism Soc Am, 1992(5): 2045-2074.
    [10]
    付长华, 高孟潭, 陈 鲲. 北京盆地结构对长周期地震动反应谱的影响[J]. 地震学报, 2012, 34(3): 374-382. (FU Chang-hua, GAO Meng-tan, CHEN Kun. A study on long-period response spectrum of ground motion affected by basin structure of Beijing[J]. Acta Seismologica Sinica, 2012, 34(3): 374-382. (in Chinese))
    [11]
    SANCHEZ-SESMA F J, LUZON F, PEREZ-RUIZ J A. In-plane seismic response of inhomogeneous alluvial valleys with vertical gradients of velocities and constant Poisson ratio[J]. Soil Dyn Earthquake Eng, 2009, 29: 994-1004.
    [12]
    巴振宁, 梁建文. Rayleigh波斜入射下层状场地中凸起地形的三维响应分析[J]. 中国科学:技术科学, 2015, 45(8): 874-888. (BA Zhen-ning, LIANG Jian-wen. Three dimensional responses of a hill in a layered half-space for obliquely incident Rayleigh waves[J]. Science China Technological Sciences, 2015, 45: 874-888. (in Chinese))
    [13]
    刘中宪, 梁建文, 赵瑞斌. 流体饱和层状半空间中沉积谷地对地震波的散射—IBIEM 求解[J]. 岩土工程学报, 2013, 35(3): 512-522. (LIU Zhong-xian, LIANG Jian-wen, ZHAO Rui-bin. Indirect boundary integral equation method for solving scattering of seismic waves by an alluvial valley in fluid poroelastic layered half-space[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 512-522. (in Chinese))
    [14]
    MOSSESSIAN T K, DRAVINSKI M. Amplification of elastic waves by a three dimensional valley. Part 1: steady state response[J]. Earthquake Eng Struct Dyn, 1990, 19: 667-680.
    [15]
    金 峰, 张楚汉, 王光纶. 结构地基相互作用的 FE-BE-IBE 耦合模型[J]. 清华大学学报 (自然科学版), 1993, 33(2): 17-25. (JIN Feng, ZHANG Chu-han, WANG Guang-lun. A Coupling FE-BE-IBE model for structure- foundation interactions[J]. Journal of Tsinghua University (Natural Science), 1993, 33(2): 17-25. (in Chinese))
    [16]
    MOSSESSIAN T K, DRAVINSKI M. A hybrid approach for scattering of elastic waves by three-dimensional irregularities of arbitrary shape[J]. J Phys Earth, 1992, 40: 241-261.
    [17]
    LYSMER J, KULEMEYER R L. Finite dynamic model for infinite media[J]. J Engng Mech Div ASCE, 1969, 95: 759-877.
    [18]
    刘晶波, 王振宇, 杜修力, 等. 波动问题中的三维时域 黏弹性人工边界[J]. 工程力学, 2005, 22(6): 46-51. (LIU Jing-bo, WANG Zhen-yu, DU Xiu-li, et al. Three- dimensional visco-elastic artificial boundaries in time domain for wave motion problems[J]. Engineering Mechanic, 2005, 22(6): 46-51. (in Chinese))
    [19]
    廖振鹏. 工程波动理论导论[M]. 2版. 北京: 科学出版社, 2002. (LIAO Zhen-peng. Introduction to wave motion theories in engineering[M]. 2nd ed. Beijing: Science Press, 2002. (in Chinese))
    [20]
    CLAYTON R, ENGQUIST B. Absorbing boundary condition for acoustic and elastic equations[J]. Bull Seism Soc Am, 1977, 67: 1529-1540 .
    [21]
    WOLF J P. Dynamic soil-structure interaction[M]. New Jersey: Prentice Hall, 1985.
    [22]
    梁建文, 巴振宁. 三维层状场地中斜面均布荷载动力格林函数[J]. 地震工程与工程振动, 2007, 27(5): 18-26. (LIANG Jian-wen, BA Zhen-ning. Dynamic Green’s function for uniformly distributed loads acting on an inclined plane in 3-D layered site[J]. Journal of Earthquake Engineering and Engineering Vibration, 2007, 27(5): 18-26. (in Chinese))
    [23]
    刘中宪, 梁建文. 三维黏弹性层状半空间埋置集中荷载动力格林函数求解—修正刚度矩阵法[J]. 固体力学学报, 2013, 34(6): 579-588. (LIU Zhong-xian, LIANG Jian-wen. Dynamic Green’s function for three-dimensional concentrated loads in the interior of viscoelastic layered half-space—Modified Stiffness Matrix Method[J]. Chinese Journal of Solid Mechanics, 2013, 34(6): 579-588. (in Chinese))
    [24]
    SÁNCHEZ-SESMA F J. Diffraction of elastic waves by three-dimensional surface irregularities[J]. Bull Seism Soc Am, 1983, 73(6A): 1621-1636.
    [25]
    廖振鹏, 杨柏坡, 袁一凡. 三维地形对地震地面运动的影响[J]. 地震工程与工程震动, 1980(1): 13-33. (LIAO Zhen-peng, YANG Bai-po, YUAN Yi-fan. Effect of three- dimensional topography on earthquake ground motion[J]. Journal of Earthquake Engineering and Engineering Vibration, 1980(1): 13-33. ( in Chinese))

Catalog

    Article views (511) PDF downloads (322) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return