SUN Zhao-hua, YU Xiang-juan, GAO Ming-jun, WU Kun. Experimental studies on vacuum preloading incorporated with electro-osmosis consolidation for dredger fill[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 250-258. DOI: 10.11779/CJGE201702008
    Citation: SUN Zhao-hua, YU Xiang-juan, GAO Ming-jun, WU Kun. Experimental studies on vacuum preloading incorporated with electro-osmosis consolidation for dredger fill[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 250-258. DOI: 10.11779/CJGE201702008

    Experimental studies on vacuum preloading incorporated with electro-osmosis consolidation for dredger fill

    More Information
    • Received Date: November 22, 2015
    • Published Date: March 24, 2017
    • The dewatering effect of dredger fill using the vacuum preloading incorporated with electro-osmosis in different ways is evaluated by implementing six laboratory tests. The test results show that the asynchronous consolidation effect of the vacuum preloading incorporated with electro-osmosis is better than that of the other tests. However, the vacuum preloading and electro-osmosis will not be able to give full play to the drainage effect if the alternate time is too short. Alternatively, the energy provided by the vacuum preloading and electro-osmosis will not be able to make full use if the alternate time is too long. There are some advantages when using the vacuum preloading and electro-osmosis asynchronous reinforcement. The alternate time of vacuum preloading and electro-osmosis has to be constantly adjusted according to the water discharge or drainage rate in engineering application.
    • [1]
      彭 涛, 武 威, 黄少康, 等. 吹填淤泥的工程地质特性研究[J]. 工程勘察, 1999(5): 3-7. (PENG Tao, WU Wei, HUANG Shao-kang, et al. Research on engineering geologic properties of blown filled muck[J]. Geotechnical Investigation and Surveying, 1999(5): 3-7. (in Chinese))
      [2]
      鲍树峰, 娄 炎, 董志良, 等. 新近吹填淤泥地基真空固结失效原因分析及对策[J]. 岩土工程学报, 2014, 36(7): 1350-1359. (BAO Shu-feng, LOU Yan, DONG Zhi-liang, et al. Causes and countermeasures for vacuum consolidation failure of newly-dredged mud foundation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1350-1359. (in Chinese))
      [3]
      朱群峰, 高长胜, 杨守华, 等. 超软淤泥地基处理中真空度传递特性研究[J]. 岩土工程学报, 2010, 32(9): 1429-1433. (ZHU Qun-feng, GAO Chang-sheng, YANG Shou-hua, et al. Transfer properties of vacuum degree in treatment of super-soft muck foundation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1429-1433. (in Chinese))
      [4]
      应 舒, 高长胜, 黄家青. 新吹填淤泥地基浅层处理试验研究[J]. 岩土工程学报, 2011, 32(12): 1956-1960. (YING Shu, GAO Chang-sheng, HUANG Jia-qing. Experimental study on surface-layer improvement of soft foundation filled by newly dredged silt[J]. Chinese Journal of Geotechnical Engineering, 2011, 32(12): 1956-1960. (in Chinese))
      [5]
      CHAI J, MIURA N, BERGADO D T. Preloading clayey deposit by vacuum pressure with cap-drain: analyses versus performance[J]. Geotextiles and Geomembranes, 2008, 26(3): 220-230.
      [6]
      金小荣, 俞建霖, 龚晓南, 等. 真空预压部分工艺的改进[J]. 岩土力学, 2007, 28(12): 2711-2714. (JIN Xiao-rong, YU Jian-lin, GONG Xiao-nan, et al. Improvement of partial technology for vacuum preloading[J]. Rock and Soil Mechanics, 2007, 28(12): 2711-2714. (in Chinese))
      [7]
      龚晓南, 岑仰润, 李昌宁. 真空排水预压加固软土地基的研究现状及展望[C]// 地基处理理论与实践—第七届全国地基处理学术讨论会论文集. 兰州: 中国水利水电出版社, 2002: 3-7. (GONG Xiao-nan, CHEN Yang-run, LI Chang-ning. Actuality and expectation in the research of vacuum preloading reinforcement of soft foundation[C]// Theory and Practice of Foundation Treatment——The 7th National Academic Conference on Foundation Treatment. Lanzhou: China Water and Power Press, 2002: 3-7. (in Chinese))
      [8]
      CASAGRANDE L. Electro-Osmosis in soils[J]. Géotechnique, 1949, 1(3): 159-177.
      [9]
      RITTIRONG A, SHANG J Q, MOHAMEDELHASSAN E, et al. Effects of electrode configuration on electrokinetic stabilization for caisson anchors in calcareous sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(3): 352-365.
      [10]
      SU J Q, WANG Z. The two-dimensional consolidation theory of electro-osmosis[J]. Géotechnique, 2003, 53(8): 759-763.
      [11]
      JONES C, FAKHER A, HAMIR R, et al. Geosynthetic materials with improved reinforcement capabilities[C]// Proceedings of the International Symposium on Earth Reinforcement. Fukuoka: CRC Press, 1996, 2: 865-883.
      [12]
      庄艳峰, 邹维列, 王 钊, 等. 一种可导电的塑料排水板:中国, 201210197981.4[P]. 2012-10-10. (ZHUANG Yan-feng, ZOU Wei-lie, WANG Zhao, et al. A conductive plastic drain board: China, 201210197981.4[P]. 2012-10-10. (in Chinese))
      [13]
      房营光, 徐 敏, 朱忠伟. 碱渣土的真空-电渗联合排水固结特性试验研究[J]. 华南理工大学学报(自然科学版), 2006, 34(11): 70-75. (FANG Ying-guang, XU Min, ZHU Zhong-wei. Experimental investigation into draining consolidation behavior of soda residue soil under vacuum preloading-electro-osmosis[J]. Journal of South China University of Technology (Natural Sciences), 2006, 34(11): 70-75. (in Chinese))
      [14]
      王柳江, 刘斯宏, 汪俊波, 等. 真空预压联合电渗法处理高含水率软土模型试验[J]. 河海大学学报(自然科学版), 2011, 39(6): 671-675. (WANG Liu-jiang, LIU Si-hong, WANG Jun-bo, et al. Model test for high-water-content soft soil treatment under vacuum preloading in combination with electroosmosis[J]. Journal of Hohai University (Natural Sciences), 2011, 39(6): 671-675. (in Chinese))
      [15]
      吴 辉, 胡黎明. 真空预压与电渗固结联合加固技术的理论模型[J]. 清华大学学报(自然科学版), 2012, 52(2): 182-185. (WU Hui, HU Li-ming. Analytical models of the coupling of vacuum preloading and electro-osmosis consolidation for ground stabilization[J]. Journal of Tsinghua University (Science and Technology), 2012, 52(2): 182-185. (in Chinese))
      [16]
      PENG J, XIONG X, MAHFOUZ A H, et al. Vacuum preloading combined electroosmotic strengthening of ultra-soft soil[J]. Journal of Central South University, 2013, 20(11): 3282-3295.
      [17]
      SUN Z H, GAO M J, YU X J. Vacuum preloading combined with electro-osmotic dewatering of dredger fill using electric vertical drains[J]. Drying Technology, 2015, 33(7): 847-853.
      [18]
      孙召花. 基于EVD的真空-电渗联合加固吹填土地基试验与理论研究[D]. 南京: 河海大学, 2015. (SUN Zhao-hua. Experimental and theoretical study of vacuum preloading combined with electro-osmotic consolidation on dredger fill foundation using EVD[D]. Nanjing: Hohai University, 2015. (in Chinese))
    • Related Articles

      [1]LIU Xianwei, CHEN Su, LI Xiaojun, FU Lei, HU Jinjun, SUN Hao. Characteristics of marine site based on HVSR dynamic clustering method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 213-220. DOI: 10.11779/CJGE20211449
      [2]WANG Jun-jie, FENG Deng, CHAI He-jun, LIU Yun-fei. Dominant discontinuities based on stereographic projection and K-means clustering algorithm[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 74-81. DOI: 10.11779/CJGE201801006
      [3]WU Hong-gang, MA Hui-min, ZHANG Hong-li. Evaluation of subgrade stability of mountainous highway exhibition based on interaction matrix[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 202-206.
      [4]LI Dian-qing, TANG Xiao-song, ZHOU Chuang-bing. Reliability analysis of slope stability involving correlated non-normal variables using knowledge-based clustered partitioning method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 875.
      [5]Prediction of rock burst based on ant colony clustering algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
      [6]Pedigree cluster method to evaluate geometrical anisotropy of soil micro-structure[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
      [7]HU Houtian, WANG Anfu, LIU Yongjiang, ZHAO Xiaoyan. Stability of granite soil high slopes[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 824-828.
      [8]CAI Guojun, LIU Songyu, TONG Liyuan, DU Guangyin. Soil classification using CPTU data based upon cluster analysis theory[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 416-424.
      [9]FENG Xinglong, WANG Liguan, BI Lin, JIA Mingtao, GONG Yuanxiang. Collapsibility of orebody based on Mathews stability graph approach[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 600-604.
      [10]Xu Linrong, Hua Zukun, Yang Canwen. Investigation and analysis of performance of reinforced steep slope using fuzzy cluster[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 475-480.
    • Cited by

      Periodical cited type(8)

      1. 刘华仁,佟大威,余佳,苏哲. 基于模糊聚类和随机子空间的高土石坝模态参数自动识别. 水力发电学报. 2025(02): 107-115 .
      2. 蔡正银,范开放,朱洵. 基于现场试验的海上筒型基础风电结构动力特性研究. 岩土工程学报. 2025(03): 443-452 . 本站查看
      3. 张翰,张锋,谭尧升,姚孟迪,邓检华. 基于运行时模态分析和代理模型的大坝力学参数反演方法. 粉煤灰综合利用. 2025(01): 163-166 .
      4. 张晓明,谭蓉,贺育明,强继峰,孙森林,张朝军,梁刚. 基于时频域信号特征的输电塔运行模态分析. 电网与清洁能源. 2025(03): 46-52+59 .
      5. 王晓澎,张浩,李欣,肖森,刘璇. 基于随机子空间法的滑动轴承运行模态参数识别. 噪声与振动控制. 2024(01): 126-133 .
      6. 樊圆,卢文胜,虞终军,任祥香. 多次地震作用下高层建筑结构动力特性识别和响应分析. 建筑结构学报. 2023(01): 225-234 .
      7. 翟世龙,刘萍,黄静,艾萨·伊斯马伊力,毛玉剑. 基于大坝地震反应台阵的土石坝模态参数识别. 内陆地震. 2023(04): 353-361 .
      8. 黄嘉思,徐文城,段元锋,章红梅. 基于随机子空间方法的向量式有限元索网模型模态识别. 结构工程师. 2022(06): 1-6 .

      Other cited types(7)

    Catalog

      Article views PDF downloads Cited by(15)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return