• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Zong-heng, XU Ze-min, WANG Zhi-liang. Application of lattice Boltzmann method in macropore flows in unsaturated zone soil of slopes[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 178-184. DOI: 10.11779/CJGE201701017
Citation: XU Zong-heng, XU Ze-min, WANG Zhi-liang. Application of lattice Boltzmann method in macropore flows in unsaturated zone soil of slopes[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 178-184. DOI: 10.11779/CJGE201701017

Application of lattice Boltzmann method in macropore flows in unsaturated zone soil of slopes

More Information
  • Received Date: November 05, 2015
  • Published Date: January 24, 2017
  • The establishment of macropore structure and infiltration simulation is primarily used to explain the mechanism and dynamic change of macropore flows. The macropore domain of unsaturated zone soil of slopes by means of CT scan is acquired. Moreover, based on the lattice Boltzmann method regardless of the external forces, qualitative and quantitative researches on two-dimensional macropore flow seepage process are achieved after the discrete-velocity model, equilibrium distribution function and evolution equation of distribution function are established with boundary conditions and calculation assumptions according to dye tracer experiments. The results show that: (1) This computing method can clearly and quantitatively describe the wetting front propulsion of macropore flows and prove that the macropore effect is obvious, but the effect decreases when the seepage flow velocity gradually tends to be stable. (2) The fluid velocity is faster in better connectivity and larger macropore size area, and the velocity decreases gradually from the center to both sides of macropore which means it is the fastest in the center. (3) The quantity and velocity of fluid flows at the lower depth is under the control of the macropore size at the above depth. The application of the lattice Boltzmann method can offer helps for macropore flows, especially three-dimensional seepage study.
  • [1]
    徐则民. 植被与斜坡非饱和带大空隙[J]. 地学前缘, 2007, 14(6): 134-142. (XU Ze-min. Vegetation and macropores in vadose of hill slopes[J]. Earth Science Frontiers, 2007, 14(6): 134-142. (in Chinese))
    [2]
    刘 伟, 区自清, 应佩峰. 土壤大孔隙及其研究方法[J].应用生态学报, 2001, 12(3): 465-468. (LIU Wei, QU Zi-qing, YING Pei-feng. Chinese Journal of Applied Ecology, 2001, 12(3): 465-468. (in Chinese))
    [3]
    秦耀东, 任 理, 王 济. 土壤中大孔隙流研究进展与现状[J]. 水科学进展, 2000, 11(2): 203-207. (QIN Yao-dong, REN Li, WANG Ji. Review on the study of macropore flow in soil[J]. Advances in Water Science, 2000, 11(2): 203-207. (in Chinese))
    [4]
    李伟莉, 金昌杰, 王安志, 等. 土壤大孔隙流研究进展[J]. 应用生态学报, 2007, 18(4): 888-894. (LI Wei-li, JIN Chang-jie, WANG An-zhi, et al. Research progress in soil macropore flow[J]. Chinese Journal of Applied Ecology, 2007, 18(4): 888-894. (in Chinese))
    [5]
    WARNER G S, NIEBER J L, MOORE I D, et al. Characterizing macropores in soil by computed tomography[J]. Soil Science Society of America Journal, 1989, 53(3): 653-660.
    [6]
    LUXMOORE R J, JARDINE P M, WILSON G V, et al. Physical and chemical controls of preferred path flow through a forested hillslope[J]. Geoderma, 1990, 46(1): 139-154.
    [7]
    CAREY S K, QUINTON W L, GOELLER N T. Field and laboratory estimates of pore size properties and hydraulic characteristics for subarctic organic soils[J]. Hydrological Processes, 2007, 21: 2560-2571.
    [8]
    LAMANDÉ M, LABOURIAU R, HOLMSTRUP M, et al. Density of macropores as related to soil and earthworm community parameters in cultivated grasslands[J]. Geoderma, 2011, 162: 319-326.
    [9]
    吴华山, 陈效民, 陈 粲. 利用CT扫描技术对太湖地区主要水稻土中大孔隙的研究[J]. 水土保持学报, 2007, 21(2):175-178. (WU Hua-shan, CHEN Xiao-min, CHEN Can. Study on macropore in main paddy soils in tai-lake region with CT[J]. Journal of Soil and Water Conservation, 2007, 21(2): 175-178. (in Chinese))
    [10]
    梁 越, 陈建生, 陈 亮. 孔隙流动数值模拟建模方法及孔隙流速分布规律[J]. 岩土工程学报, 2011, 33(7): 1104-1109. (LIANG Yue, CHEN Jian-sheng, CHEN Liang. Numerical simulation model for pore flow and distribution of their vevelocity[J]. Chinese Journal of Geotech-nical Engineering, 2011, 33(7): 1104-1109. (in Chinese))
    [11]
    冯 杰, 张佳宝, 郝振纯, 等. 水及溶质在有大孔隙的土壤中运移的研究 (Ⅱ): 数值模拟[J]. 水文地质工程地质, 2004, 31(4): 77-82. (FENG Jie, ZHANG Jia-bao, HAO Zhen-chun, et al. A study of the transport of water and solute in macroporous soils(Ⅱ): numerical simulation[J]. Hydrogeology & Engineering Geology, 2004, 31(4): 77-82. (in Chinese))
    [12]
    郭照立, 郑楚光. 格子 Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2009. (GUO Zhao-li, ZHENG Chu-guang. Theory and applications of lattice boltzmann method[M]. Beijing: Science Press, 2009. (in Chinese))
    [13]
    何雅玲, 王 勇, 李 庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2008. (HE Ya-ling, WANG Yong, LI Qing. Lattice boltzmann method: theory and applications[M]. Beijing: Science Press, 2008. (in Chinese))
    [14]
    申林方, 王志良, 李邵军. 基于格子Boltzman方法的饱和土体细观渗流场[J]. 排灌机械工程学报, 2014, 32(10): 883-887. (SHEN Lin-fang, WANG Zhi-liang, LI Shao-jun. Microscopic seepage field of saturated soil with lattice Boltzmann method[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(10): 883-887. (in Chinese))
    [15]
    QIAN Y H, HUMIÈRES D D, LALLEMAND P. Lattice BGK models for navier-stokes equation[J]. Europhysics Letters, 1992, 17(6): 479-484.
    [16]
    徐宗恒, 徐则民, 官 琦, 等. 不同植被发育斜坡土体优先流特征[J]. 山地学报, 2012, 30(5): 521-527. (XU Zong-heng, XU Ze-min, GUAN Qi, et al. The Characteristics of preferential flow in different vegetated slope soils[J]. Journal of Mountain Science, 2012, 30(5): 521-527. (in Chinese))
    [17]
    GUO Z L, ZHENG C G, SHI B C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltamann method[J]. Chinese Physics, 2002, 11(4): 366-374.
    [18]
    徐宗恒, 徐则民, 李凌旭. 基于CT扫描的斜坡非饱和带土体大孔隙定量化研究和三维重建[J].水土保持通报, 2015, 35(1): 1-6. (XU Zong-heng, XU Ze-min, LI Ling-xu. Macropores quantification study and 3D reconstruction in vadose zones of hillslope based on X-ray computed tomography[J]. Bulletin of Soil and Water Conservation, 2015, 35(1): 1-6. (in Chinese))
  • Cited by

    Periodical cited type(9)

    1. 陈鑫,余文亮. 混合型缓冲回填材料劈裂抗拉强度尺寸效应统计分析. 科学技术与工程. 2024(10): 4229-4238 .
    2. 陈梦豪,付海,曹珊珊,林铭宇,陈良宇. 温度对MX-80膨润土物理性能的影响. 金陵科技学院学报. 2024(01): 46-53 .
    3. 刘桃根,李玲,王伟,谢敬礼,刘造保. 黏土-砂混合物三轴压缩超声波特性研究. 地下空间与工程学报. 2024(S1): 119-127 .
    4. 项国圣,卞云飞,付文青,周殷康. 热-碱作用对压实膨润土抗剪性能的影响. 安徽建筑大学学报. 2024(06): 8-14 .
    5. 曹胜飞,刘月妙,谢敬礼,张奇,杨明桃,高玉峰. 高放废物处置缓冲材料砌块抗压强度特性试验研究. 世界核地质科学. 2023(01): 58-67 .
    6. 张潜华. 微波技术在路基软土力学性质修复中的试验研究. 西部交通科技. 2023(01): 75-77 .
    7. 蒋银强,梁建楠,赵雅贞,段朕,赵昊洋. 微波加热对膨胀土膨胀性影响的试验研究. 南阳理工学院学报. 2023(06): 68-72 .
    8. 曹胜飞,刘月妙,谢敬礼,闫安,高玉峰,佟强. 高庙子膨润土热膨胀特性试验研究. 岩土工程学报. 2022(02): 377-383 . 本站查看
    9. 樊恒辉,倪晓逸,孟敏强,杨秀娟,张路. 土体热加固方法的研究进展. 水利与建筑工程学报. 2021(05): 1-7 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return