• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Bo-hu, LIU Wei-feng, DENG Jian-hui, LIU Jian-feng. Damage mechanism and stress wave spectral characteristics of rock under tension[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 336-341. DOI: 10.11779/CJGE2016S2055
Citation: ZHANG Bo-hu, LIU Wei-feng, DENG Jian-hui, LIU Jian-feng. Damage mechanism and stress wave spectral characteristics of rock under tension[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 336-341. DOI: 10.11779/CJGE2016S2055

Damage mechanism and stress wave spectral characteristics of rock under tension

More Information
  • Received Date: May 18, 2016
  • Published Date: October 19, 2016
  • The tensile property of rock is much worse than its compression performance, and the damage mechanism under tension determines the stability and safety of rock engineering. To study the tensile damage mechanism of rock, the vibration theory and acoustic emission (AE) signal tests under indirect tensile conditions are used to analyze the damage evolution process of granite. The tensile damage mechanism is obtained by using the fractal theory and the distribution of dominant frequencies and energies of AE signals. Based on the distribution of AE events, damage is instantaneous and the number of AE events sharply increases when the loading stress reaches its ultimate tensile strength (UTS), reflecting apparently brittle performance. The fractal dimension of AE events decreases as the loading stress increases. The dominant frequencies of AE signals at the indirect tensile stage are mainly concentrated at 175~250 kHz and 50~100 kHz. Their energies are intensively distributed in the band width of 0~312.5KHz. The stress wave characteristics and fractal mechanism can reflect the basic mechanical property of rock. They are of important experimental and theoretical significance for further studies on rock performance and enhancing the safety of rock engineering.
  • [1]
    KAISER J. A study of acoustic phenomena in tensile tests[D]. Technische Hochschule Munched, FRG, 1950.
    [2]
    MOGI K. Study of elastic cracks caused by the fracture of heterogeneous materials and its relations to earthquake phenomena[J]. Bulletin of the Earthquake Research Institute, 1962, 40: 125-173.
    [3]
    RUDAJEV V, VILHELM J, LOKAJICEK T. Laboratory studies of acoustic emission prior to uniaxial compressive rock failure[J]. Int J Rock Mech& Min Sci, 2000, 37(4): 699-704.
    [4]
    PESTMAN B J, VAN MUNSTER J G. An acoustic emission study of damage development and stress-memory effects in sandstone[J]. Int J Rock Mech Min Sci & Geomech Abstr, 1996, 33(6): 585-593.
    [5]
    勝山邦久. 声发射(AE)技术的应用[M]. 冯夏庭, 译. 北京: 冶金工业出版社, 1996. (KATSUYAMA K. Application of AE techniques[M]. FENG Xia-ting, tran. Beijing: Metallurgy Industry Press, 1996. (in Chinese))
    [6]
    DAI S T, LABUZ J F. Damage and failure analysis of brittle materials by acoustic emission[J]. Journal of Material in Civil Engineering, 1997, 9(4): 200-205.
    [7]
    COX S J D, MEREDITH P G. Microcrack formation and material softening in rock measured by monitoring acoustic emissions[J]. Int J rock Mech Min Sci & Geomech Abstr, 1993, 30(1): 11-24.
    [8]
    秦四清, 李造鼎, 张倬元, 等. 岩石声发射技术概论[M]. 成都: 西南交通大学出版社, 1993. (QIN Si-qing, LI Zao-ding, ZHANG Zhuo-yuan, et al. An introduction to acoustic emission techniques in rocks[M]. Chengdu: Southwest Jiaotong University Press, 1993. (In Chinese))
    [9]
    张志雄. 岩石直接拉伸与压缩变形特性的试验研究[D]. 昆明理工大学, 2008. (ZHANG Zhi-xiong. Experimental research on deformation behavior of rocks in direct tension and compression[D]. Kunming University of Science and Technology, 2008. (in Chinese))
    [10]
    喻 勇, 张宗贤, 俞 洁, 等. 岩石直接拉伸破坏中的能量耗散及损伤特征[J]. 岩石力学与工程学报, 1998, 17(4): 38-44. (YU Yong, ZHANG Zong-xian, YU Jie, et al. Energy dissipation and damage characters in rock direct tensile destruction[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(4): 38-44. (in Chinese))
    [11]
    梁正召, 唐春安, 张永彬, 等. 岩石直接拉伸破坏过程及其分形特征的三维数值模拟研究[J]. 岩石力学与工程学报, 2008, 27(7): 1402-1410. (LIANG Zheng-zhao, TANG Chun-an, ZHANG Yong-bin, et al. Three-dimensional numerical study of direct tensile fracture of rock and associated fractal[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1402-1410. (in Chinese))
    [12]
    周小平, 张永兴, 哈秋舲, 等. 单轴拉伸条件下细观非均匀性岩石变形局部化分析及其应力-应变全过程研究[J]. 岩石力学与工程学报, 2004, 23(1): 1-6. (ZHOU Xiao-ping, ZHANG Yong-xing, HA Qiu-ling, et al. Analyses on strain localization and complete stress-strain relation of mesoscopic rock under uniaxial tension[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(1): 1-6. (in Chinese))
    [13]
    THAM L G, LIU H, TANG C A, et al. On tension failure of 2-D rock specimens and associated acoustic emission[J]. Rock Mech Rock Engng, 2005, 38(1): 1-19.
    [14]
    付军辉, 黄炳香, 刘长友, 等. 煤试样巴西劈裂的声发射特征研究[J]. 煤炭科学技术, 2011, 39(4): 25-28. (FU Jun-hui, HUANG Bing-xiang, LIU Chang-you, et al. Study on acoustic emission features of coal sample in Brazilian splitting[J]. Coal Science and Technology, 2011, 39(4): 25-28. (in Chinese))
    [15]
    刘建锋, 徐进, 杨春和, 等. 盐岩拉伸破坏力学特性的试验研究[J]. 岩土工程学报, 2011, 33(4): 580-586. (LIU Jian-feng, XU Jin, YANG Chun-he, et al. Mechanical characteristics of tensile failure of salt rock[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 580-586. (in Chinese))
    [16]
    周瑶琪, 王爱国, 陈 勇, 等. 岩石压裂过程中的声发射信号研究[J]. 中国矿业, 2008, 17(2): 94-97. (ZHOU Yao-qi, WANG Ai-guo, CHEN Yong, et al. Research on acoustic emission of rock fracture[J]. China Mining Magazine, 2008, 17(2): 94-97. (in Chinese))
    [17]
    刘新平, 刘 英, 陈 顒. 单轴压缩条件下岩石样品声发射信号的频谱分析[J]. 声学学报, 1986, 11(2): 80-87. (LIU xin-ping, LIU Ying, CHEN Yong. Spectral analysis of acoustic emissions of rock specimen during uniaxial compression[J]. Acta Acustica, 1986, 11(2): 80-87. (in Chinese))
    [18]
    刘建伟, 吴贤振, 刘祥鑫, 等. 不同岩石脆性破坏声发射时频特性及信号识别[J]. 有色金属科学与工程, 2013, 4(6): 73-77. (LIU Jian-wei, WU Xian-zhen, LIU Xiang-xin, et al. Time -frequency characteristic and signal recognition of acoustic emission generated from different rock brittle failure[J]. Nonferrous Metals Science and Engineering, 2013, 4(6): 73-77. (in Chinese))
    [19]
    牛滨华, 孙春岩. 半空间介质与地震波传播[M]. 北京: 石油工业出版社, 2002. (NIU Bin-hua, SUN Chun-yan. Half-space medium and seismic wave propagation[M]. Beijing: Petroleum Industry Press, 2002. (in Chinese))
    [20]
    李建功. 应力波在弹塑性煤岩体中传播衰减规律研究[D]. 青岛: 山东科技大学, 2008. (LI Jian-gong. Study on the stress wave propagation attenuation laws in the elastoplastic coal rock[D]. Qingdao: Shandong University of Science and Technology, 2008. (in Chinese))
    [21]
    刘习军, 贾启芬, 张文德. 工程振动与测试技术[M]. 天津: 天津大学出版社, 1999. (LIU Xi-jun, JIA Qi-fen, ZHANG Wen-de. Engineering vibration and testing techniques[M]. Tianjin: Tianjin University Press, 1999. (in Chinese))
    [22]
    HITATA T, SATOH T, ITO K. Fractal structure of spatial distribution of microfracturing in rock[J]. Geophysical Journal International-Geophys Jint, 1987, 90(2): 369-374.
    [23]
    凌同华, 李夕兵. 多段微差爆破振动信号频带能量分布特征的小波包分析[J]. 岩石力学与工程学报, 2005, 24(7): 1117-1122. (LING Tong-hua, LI Xi-bing. Analysis of energy distributions of millisecond blast vibration signals using the wavelet packet method[J]. Chinese Journal of rock Mechanics and Engineering, 2005, 24(7): 1117-1122. (in Chinese))
  • Cited by

    Periodical cited type(24)

    1. 李东明,聂一丹,晁阳,齐慧君,林潮宁. 基于改进聚类方法的大坝安全监测算法. 水力发电. 2025(04): 97-103+110 .
    2. 李扬涛,包腾飞,李田雨. 深水大坝缺陷鲁棒实时检测方法. 武汉大学学报(信息科学版). 2025(04): 684-698 .
    3. 穆明垚,王岳航,冯国磊. 水库除险加固方案设计与技术优化及坝体稳定性分析. 粘接. 2025(04): 163-165+169 .
    4. 邓鹏. 物联网技术在小水库大坝安全监测中的应用现状. 中国宽带. 2025(04): 95-97 .
    5. 董蕊. 基于BIM技术在土石坝渗流安全监控与预警. 地下水. 2025(02): 260-262 .
    6. 高寒. 机电设备中智能故障检测诊断技术的运用. 黑龙江科学. 2024(02): 64-66 .
    7. 徐新超,张若冰. 降水极端情况下某闸坝的自适应防洪安全运行管理研究. 珠江水运. 2024(02): 119-121 .
    8. 海日姑·阿布都热西提. 小型水库雨水情测报和大坝安全监测系统设计与实践. 中国水运(下半月). 2024(03): 88-90 .
    9. 尹光景,李晨玉,曾子彬,赵芃芃,雷鹏,常留红. 基于Vue.js+Django的大坝安全监测信息管理系统开发. 软件. 2024(01): 47-49+82 .
    10. 王猛,刘英英,周明明. 浅析大坝失事主要原因及应对措施方案. 水利规划与设计. 2024(05): 81-83+105 .
    11. 刘郴玲,蒋光灿. 基于龟石水库监测资料的大坝安全性态评估分析. 人民珠江. 2024(S1): 29-33 .
    12. 李东明,李龙龙,晁阳,李同春,齐慧君,林潮宁. 大坝安全监测数字孪生系统应用研究. 水力发电. 2024(09): 110-117 .
    13. 沈晓雷,余泉,季昊巍. 基于传感器的海上风电钢结构腐蚀检测方法. 中国水运. 2024(06): 91-92 .
    14. 盛金保,李宏恩,王芳. 智能大坝建设与韧性提升发展路径研究. 中国水利. 2024(24): 68-77 .
    15. 王琛,陈锦,谢应兵. 浅析现代水利工程成本控制理论及其存在问题. 红水河. 2023(01): 7-10 .
    16. 李松培,周江,黎海波,熊静,杨志虎,刘家森. 大坝安全在线监控及智能管理平台探索与应用. 云南水力发电. 2023(06): 173-176 .
    17. 窦飞,薛江寒. 岱山大坝渗流预测模型研究及渗漏问题分析. 海河水利. 2023(06): 61-68+112 .
    18. 李宗坤,王特,葛巍,景来红,罗秋实,杨风威,宋志宇,马福恒. 黄河流域梯级水库大坝风险评估与管控的战略思考. 人民黄河. 2023(07): 1-6 .
    19. 刘越,周志维. 基于小概率法的大坝多源监测预警阈值研究. 江西水利科技. 2023(04): 252-256 .
    20. 热米拉·塔什珀拉提. 溢洪道水流特性的性能模拟研究. 水利科技与经济. 2023(07): 122-127 .
    21. 何永祥. 甘肃永昌皇城水库大坝安全评价分析. 水利科学与寒区工程. 2023(09): 142-144 .
    22. 李宇文. 小型病险水库安全鉴定及加固改造实践——以水磨坑水库为例. 湖南水利水电. 2023(05): 75-78 .
    23. 李宗坤,王特,葛巍,景来红,崔秋晶,焦余铁. 考虑溃坝后果的水库工程等级划分方法. 水科学进展. 2023(05): 753-765 .
    24. 唐忠海,陈章傑,刘书婷,廖渝,李欣艺,李滟浩,袁士才. 无人机航测技术在大坝裂缝检测中的应用研究. 科技创新与生产力. 2022(10): 63-65 .

    Other cited types(9)

Catalog

    Article views PDF downloads Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return