• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Zhao, LIU Feng-yin, LI Rong-jian, CHAI Jun-rui, GU Yu. New approach to predict relative air permeability based on water retention curve for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 280-285. DOI: 10.11779/CJGE2016S2046
Citation: ZHANG Zhao, LIU Feng-yin, LI Rong-jian, CHAI Jun-rui, GU Yu. New approach to predict relative air permeability based on water retention curve for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 280-285. DOI: 10.11779/CJGE2016S2046

New approach to predict relative air permeability based on water retention curve for unsaturated soils

More Information
  • Received Date: May 18, 2016
  • Published Date: October 19, 2016
  • Accurate modeling of water and air flow in unsaturated soils requires the reasonable definition of water retention behavior and the permeability behavior of water and air in the pores. By means of the approach developed previously to estimate the relative water permeability, a new approach to predict the relative air permeability is proposed based on the water retention curve. The power value in the approach can be considered as a decreasing exponential function of the coefficient characterizing the pore-size distribution of the soil and derived from its water retention curve. The model is calibrated using the data from 22 samples and validated using the data from 5 samples ranging from sand to silty clay loam in the existing literatures. The proposed approach is superior to the available alternative approaches for describing the evolution of relative air permeability with effective air saturation.
  • [1]
    叶为民, 钱丽鑫, 白 云, 等. 由土-水特征曲线预测上海非饱和软土渗透系数[J]. 岩土工程学报, 2005, 27(11): 1262-1265. (YE Wei-min, QIAN Li-xin, BAI Yun, et al. Predicting coefficient of permeability from soil-water characteristic curve for Shanghai soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 1262-1265. (in Chinese))
    [2]
    刘奉银, 张 昭, 周 冬. 湿度和密度双变化条件下的非饱和黄土渗气渗水函数[J]. 岩石力学与工程学报, 2010, 29(9): 1907-1914. (LIU Feng-yin, ZHANG Zhao, ZHOU Dong. Density-saturation-dependent air-water permeability function of unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1907-1914. (in Chinese))
    [3]
    姚志华, 陈正汉, 黄雪峰, 等. 非饱和Q 3 黄土渗气特性试验研究[J]. 岩石力学与工程学报, 2012, 31(6): 1264-1273. (YAO Zhi-hua, CHEN Zheng-han, HUANG Xue-feng, et al. Experimental research on gas permeability of unsaturated Q 3 loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1264-1273. (in Chinese))
    [4]
    TULI A, HOPMANS J W. Effect of degree of fluid saturation on transport coefficient indisturbed soils[J]. European Journal of Soil Science, 2004, 55(1): 147-164.
    [5]
    YANG Z, MOHANTY B P. Effective parametrizations of three nonwetting phase relative permeability models[J]. Water Resource Research, 2015, 55(8): 6520-6531.
    [6]
    KUANG X, JIAO J J. A new model for predicting relative nonwetting phase permeability from soil water retention curves[J]. Water Resource Research, 2011, 47(8): 427-438.
    [7]
    KOSUGI K. Three-parameter lognormal distribution model for soil water retention[J]. Water Resource Research, 1994, 30(4): 891-901.
    [8]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
    [9]
    MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522.
    [10]
    BROOKS R H, COREY. Hydraulic properties of porous media[R]. Fort Collins: Colorado State University, 1964.
    [11]
    MOLDRUP P, OLESEN T, KOMATSU T, et al. Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases[J]. Soil Science Society of America Journal, 2001, 65(3): 613-623.
    [12]
    ASSOULINE S. A model for soil relative hydraulic conductivity based on the water retention characteristic curve[J]. Water Resources Research, 2001, 37(2): 265-271.
    [13]
    徐永福, 黄寅春. 分形理论在研究非饱和土力学性质中的应用[J]. 岩土工程学报, 2006, 28(5): 635-638. (XU Yong-fu, HUANG Yin-chun. Fractal-textured soils and their unsaturated mechanical properties[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 635-638. (in Chinese))
    [14]
    HU R, CHEN Y F, LIU H H, et al. A water retention curve and unsaturated hydraulic conductivity model for deformable soils: consideration of the change in pore size distribution[J]. Géotechnique, 2013, 63(16): 1389-1405.
    [15]
    HU R, CHEN Y F, LIU H H, et al. A relative permeability model for deformable soils and its impact on coupled unsaturated flow and elasto-plastic deformation processes[J]. Science China-Technological Sciences, 2015, 58(11): 1971-1982.
    [16]
    HUNT A G. Continuum percolation theory for saturation dependence of air permeability[J]. Vadose Zone Journal, 2005, 4(4): 134-138.
    [17]
    FREDLUND M D, WILSON G W, FREDLUND D G. Use of the grain-size distribution for estimation of the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 2002, 39(5): 1103-1117.
    [18]
    ASSOULINE S, TESSIER D, BRUAND A. A conceptual model of the soil water retention curve[J]. Water Resources Research, 1998, 34(2): 223-231.
    [19]
    ASSOULINE S. On the relationships between the pore size distribution index and characteristics of the soil hydraulic functions[J]. Water Resources Research, 2005, 41(7): 301-320.
    [20]
    ASSOULINE S. Modeling the relationship between soil bulk density and the water retention curve[J]. Vadose Zone Journal, 2006, 5(2): 554-563.
    [21]
    TULI A, HOPMANS J W, ROLSTON D E, et al. Comparison of air and water permeability between disturbed and undisturbed soils[J]. Soil Science Society of America Journal, 2005, 69(5): 1361-1371.
    [22]
    OR D, WRAITH J M. Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: a physical model[J]. Water Resources Research, 1999, 32(2): 371-383.
    [23]
    TULLER M, OR D. Water films and scaling of soil characteristic curves at low water contents[J]. Water Resources Research, 2005, 41(9): 319-335.
    [24]
    TOUMA J, VAUCLIN M. Experimental and numerical analysis of two-phase infiltration in a partially saturated soil[J]. Transport in Porous Media, 1986, 1(1): 27-55.
    [25]
    TULLER M, OR D. Hydraulic conductivity of variably saturated porous media: Film and corner flow in angular pore space[J]. Water Resources Research, 2001, 37(5): 1257-1276.
    [26]
    CHAN T P, GOVINDARAJU R S. Estimating soil water retention curve from particle-size distribution data based on polydisperse sphere systems[J]. Vadose Zone Journal, 2004, 3(4): 1443-1454.
  • Cited by

    Periodical cited type(14)

    1. 刘小锐,张晗. 盾构隧道下穿施工对严重倾斜挡墙影响及加固措施分析. 粉煤灰综合利用. 2025(01): 145-149 .
    2. 余鹏. 盾构隧道穿越在建PBA车站风险控制技术研究. 铁道标准设计. 2025(04): 148-156 .
    3. 马昭,张明礼,段旭晗,赵博. 大断面浅埋隧道地表沉降Peck修正公式及其应用. 长江科学院院报. 2024(03): 118-125 .
    4. 陈湘生,全昭熹,陈一凡,沈翔,苏栋. 极端环境隧道建造面临的主要问题及发展趋势. 隧道建设(中英文). 2024(03): 401-432 .
    5. 张子新,李小昌,李佳宇. 软土地层盾构掘进土体稳定性模型试验研究. 土木与环境工程学报(中英文). 2024(03): 41-51 .
    6. 刘彦良. 水下大直径盾构下穿施工对防汛大堤影响研究. 建筑机械. 2024(07): 142-146 .
    7. 黄震,黄侦谦,侯东祥,尤伟军,管世玉. 盾构掘进对浅基础建筑物的扰动及影响分区研究. 科技通报. 2024(07): 97-106 .
    8. 高泉平,杨硕,芮瑞,张泉,聂利文,孙天健. 邻近挡土结构隧道开挖引起地层变形的试验研究. 武汉理工大学学报. 2023(09): 75-82 .
    9. 张恒旭. 某过江隧道江心洲防洪大堤开挖对周围环境的影响分析. 工程技术研究. 2022(09): 13-17 .
    10. 王智德,武海港,杨文东,李杰,李根,刘奇. 地铁隧道近距离侧穿邻近桩基影响的试验研究. 武汉理工大学学报. 2022(06): 69-77 .
    11. 王长虹,马铖涛,吴昭欣,王昆,汤道飞. CPTU数据校准黏土和砂土统一模型本构参数的随机力学-贝叶斯方法. 土木工程学报. 2022(10): 101-116 .
    12. 董立波. 上软下硬复合地层中盾构下穿既有建筑物受力性能研究. 智能城市. 2021(04): 15-16 .
    13. 芮瑞,翟玉新,徐杨青,何清. 邻近地层损失对地下挡土结构土压力与地表沉降影响试验研究. 岩土工程学报. 2021(04): 644-652 . 本站查看
    14. 魏勇,许强,王卓,李骅锦,李松林. 动态摄影测量在物理模型实验全过程地形数据获取中的应用. 地球科学进展. 2020(10): 1087-1098 .

    Other cited types(11)

Catalog

    Article views (323) PDF downloads (243) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return