• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIAO Zhi-yi, ZHU Jian-bo, TANG Chun-an. Dynamic behavior and response of rock and underground openings subjected to high initial stresses[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 260-265. DOI: 10.11779/CJGE2016S2043
Citation: LIAO Zhi-yi, ZHU Jian-bo, TANG Chun-an. Dynamic behavior and response of rock and underground openings subjected to high initial stresses[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 260-265. DOI: 10.11779/CJGE2016S2043

Dynamic behavior and response of rock and underground openings subjected to high initial stresses

More Information
  • Received Date: May 18, 2016
  • Published Date: October 19, 2016
  • The FEM and continuous damage mechanics-based numerical code RFPA is selected as the research tool. First of all, from the view of laboratory scale, numerical SHPB (split Hopkinson pressure bar) system is established to investigate the dynamic behavior of rocks under in-situ stresses. The derived results show that the dynamic compressive strength of rock increases with the increasing depth and parameter K which is defined as the ratio of horizontal stress to vertical one. Subsequently, from the view of rock engineering scale, dynamic response of underground openings under plane and cylindrical wave disturbances are numerically investigated. In the numerical model, the properties and distribution of rock joints are fully taken into consideration. The simulated results indicate that the additional attenuation of cylindrical waves occurs as the propagation distance increases in addition to the wave attenuation caused by rock and joint damage and wave reflection and transmission along joint surfaces. Moreover, it is found that the properties and distribution of joints directly determine the wave reflection and transmission along joint surfaces, which will further influence the damage degree and PPV (peak particle velocity) results of the underground openings.
  • [1]
    KOLSKY H. Stress wave in solids[M]. New York: Dover, 1963.
    [2]
    王 斌, 李夕兵, 尹土兵, 等. 饱水砂岩动态强度的SHPB试验研究[J]. 岩石力学与工程学报, 2010, 29(5): 1003-1009. (WANG Bin, LI Xi-bing, YIN Tu-bing, et al. Split Hopkinson pressure bar(SHPB) experiments ondynamic strength of water-saturated sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 1003-1009. (in Chinese))
    [3]
    李夕兵, 周子龙, 叶州元, 等. 岩石动静组合加载力学特性研究[J]. 岩石力学与工程学报, 2008, 27(7): 1387-1395. (LI Xi-bing, ZHOU Zi-long, YE Zhou-yuan, et al. Study of rock mechanical characteristics under coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1387-1395. (in Chinese))
    [4]
    李夕兵, 宫凤强, 高 科, 等. 一维动静组合加载下岩石冲击破坏试验研究[J]. 岩石力学与工程学报, 2010, 29(2): 251-260. (LI Xi-bing, GONG Feng-qiang, GAO Ke, et al. Test study of impact failure of rock subjected to one-dimensional coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 251-260. (in Chinese))
    [5]
    LI X, ZHOU Z, YE Z, et al. Study of rock mechanical characteristics under coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27: 1387-1395.
    [6]
    张秀丽, 焦玉勇, 刘泉声, 等. 节理对爆炸波传播影响的数值研究[J]. 岩土力学, 2008, 29(3): 717-721. (ZHANG Xiu-li, JIAO Yu-yong, LIU Quan-sheng, et al. Numerical study on effect of joints on blasting wave propagation in rock mass[J]. Rock and Soil Mechanicsm, 2008, 29(3): 717-721. (in Chinese))
    [7]
    李娜娜, 李建春, 李海波, 等. 节理接触面对应力波传播影响的SHPB试验研究[J]. 岩石力学与工程学报, 2015, 34(10): 1994-2000. (LI Na-na, LI Jian-chun, LI Hai-bo, et al. SHPB experiment on influence of contact area of joints on propagation of stress wave[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 1994-2000. (in Chinese))
    [8]
    ZHU J, DENG X, ZHAO X, et al. A numerical study on eave transmission across multiple intersecting joint sets in rock masses with UDEC [J]. Rock Mechanics and Rock Engineering, 2013, 46: 1429-1442.
    [9]
    DENG X, CHEN S, ZHU J, et al. UDEC-AUTODYN hybrid modeling of a large-scale underground explosion test [J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 737-747.
    [10]
    DENG X, ZHU J, CHEN S, et al. Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses [J]. Tunnelling and Underground Space Technology, 2014, 43: 88-100.
    [11]
    BROWN E, HOEK E. Trends in relationships between measured in-situ stresses and depth [J]. International Journal of Rock Mechanics and Mining Sciences, 1978(4): 211-215.
    [12]
    LIAO Z, ZHU J, XIA K, et al. Determination of dynamic compressive and tensile behavior of rocks from numerical tests of split Hopkinson pressure and tension bars [J]. Rock Mechanics and Mining Sciences, 2016, doi: 10.1007/s00603-016-0954-8.
    [13]
    GOODMAN R, TAYLOR R, BREKKE T. A model for the mechanics of jointed rock[J]. Journal of Soil Mechanics & Foundations Div, 1968, 94(3): 637-660.
  • Related Articles

    [1]Thermal conductivity evolution of sand-clay mixtures under one-dimensional compression[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240309
    [2]WANG Wei-guang, YAO Zhi-hua, LI Wan, ZHANG Jian-hua. Compression characteristics and particle crushing behavior of coral sand–quartz sand mixture under confined high pressure[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 6-11. DOI: 10.11779/CJGE2022S1002
    [3]SHI Jian-yong, ZHAO Yi. Influence of air pressure and void on permeability coefficient of air in municipal solid waste (MSW)[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 586-593. DOI: 10.11779/CJGE201504002
    [4]WU Zheng-guang, ZHANG Hua. Experimental study on entrapped air content in quasi-saturated soil subjected to steady ponded water infiltration[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 274-279.
    [5]XU Jin, CAI Zheng-yin, WANG Xu-dong. Semi-analytical numerical analysis for plane strain consolidation of anisotropic soil with compressible constituents[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 89-93.
    [6]ZHU Chunpeng, LIU Hanlong, ZHANG Xiaolu. Laboratory tests on compression characteristics of soil polluted by acid and alkali[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1477-1483.
    [7]GAO Yanbin, ZHU Hehua, YE Guanbao, XU Chao. The investigation of the coefficient of secondary compression Ca in od ometer tests[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 459-463.
    [8]ZHANG Yiping, YU Yanan, ZHANG Tuqiao, ZHANG Xiaohai. A method for evaluating coefficient of consolidation[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 616-618.
  • Cited by

    Periodical cited type(12)

    1. 苟富刚,龚绪龙. 海相软土无侧限抗压强度曲线类型分类及影响因素. 工程地质学报. 2025(01): 20-28 .
    2. 丁发兴,吴霞,张学民,陈雷,葛敬冉,肖杨,宫凤强,陈靖,李梓焜,刘增飞,崔昊,张训杰,吕飞. 材料强度理论研究进展述评. 铁道科学与工程学报. 2024(11): 4555-4587 .
    3. 孟天一,张玉,刘瑾,赵阳,杨倩,丁潇,范特佳. 平面应变条件下基于Lade-Duncan强度准则中主应力条件的土压力及其适用性. 土木与环境工程学报(中英文). 2022(01): 20-27 .
    4. 许萍,邵生俊,房凌云,孙志军. 基于空间面变化的横观各向同性破坏准则研究. 岩土工程学报. 2022(06): 1036-1043 . 本站查看
    5. 许萍,孙志军,邵生俊. 基于空间面变化的各向异性强度变化规律研究. 岩土工程学报. 2021(06): 1118-1124 . 本站查看
    6. 路德春,韩佳月,梁靖宇,田雨,杜修力. 横观各向同性黏土的非正交弹塑性本构模型. 岩石力学与工程学报. 2020(04): 793-803 .
    7. 万征,孟达. 基于t准则的各向异性强度准则及变换应力法. 力学学报. 2020(05): 1519-1537 .
    8. 万征,宋琛琛,孟达. 一种非线性强度准则及转换应力法. 力学学报. 2019(04): 1210-1222 .
    9. 李成. 基于MNLD准则平面应变条件下土体的强度特性描述. 铁道科学与工程学报. 2019(08): 1955-1960 .
    10. 万征,孟达,宋琛琛. 一种适用于岩土的扩展强度及屈服准则. 力学学报. 2019(05): 1545-1556 .
    11. 路德春,张君鸿,梁靖宇,杜修力. 基于特征滑动面的横观各向同性土强度特性研究. 岩土工程学报. 2019(11): 2000-2008 . 本站查看
    12. 万征,宋琛琛,赵晓光. 一种横观各向同性强度准则及变换应力空间. 力学学报. 2018(05): 1168-1184 .

    Other cited types(6)

Catalog

    Article views (579) PDF downloads (415) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return