• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
QIU Zhi-qiang, GAO Ming-zhong, XIE Jing, ZHANG Zhao-peng, WANG Wen-yong. Optimization of layout pattern of underground laboratory cavern groups with buried depth of 2400 m[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 250-254. DOI: 10.11779/CJGE2016S2041
Citation: QIU Zhi-qiang, GAO Ming-zhong, XIE Jing, ZHANG Zhao-peng, WANG Wen-yong. Optimization of layout pattern of underground laboratory cavern groups with buried depth of 2400 m[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 250-254. DOI: 10.11779/CJGE2016S2041

Optimization of layout pattern of underground laboratory cavern groups with buried depth of 2400 m

More Information
  • Received Date: May 18, 2016
  • Published Date: October 19, 2016
  • Deep underground laboratory is the foundation of deep mining resources in the future. Jinping underground laboratory in China is the deepest underground laboratory in the world. The construction of No. 8 experimental cavern may involve the research of deep rock mechanics, so multiple caverns will be designed and excavated to carry out in-situ mechanics tests and principle exploration. However, the stability of underground laboratory is directly influenced by the layout pattern of cavern groups. Therefore, aiming at the excavation of the underground experimental caverns under high geostress, a 3D numerical model is established by FLAC. The influences of excavation of the subsequent caverns on the stability of surrounding rock of excavated caverns are compared, which include different spacings at the same side and different layouts at opposite sides, then the value of displacement is introduced to identify the influences of excavation on the caverns which are built. The result shows that the layout with the spacing of 8 m at the same side and the symmetry at opposite sides is optimal. They may guide the layout of underground cavern groups in Jinping’s No. 8 laboratory. Moreover, it can offer a reference for the layout of other similar underground projects.
  • [1]
    刘世煌, 吴 熹. 拉西瓦水电站高地应力地区大型地下厂房洞群围岩稳定性研究[J]. 水力发电, 1995(3): 17-21. (LIU Shi-huang, WU Xi. Surrounding rock stability study of huge hydropower station under high geostress filed[J]. Journal Hydroelectric Power, 1995(3): 17-21. (in Chinese))
    [2]
    谢和平. 深部高应力下的资源开采与地下工程——机遇与挑战[C]// 香山科学会议第175次学术讨论会——深部高应力下的资源开采与地下工程. 北京, 2001: 1-9. (XIE He-ping. Opportunity and Challenge of resource mining and underground engineering under deep high geostress[C]// Xiangshan Academic Conference Discussion No. 175—Basic Crucial Problem in Deep Underground Space Exploitation. Beijing, 2001: 1-9. (in Chinese))
    [3]
    CHRYSSANTHAKIS P, BARTON N. Dynamic loading of physical and numerical models of very large[C]// Proc of 8 th Conferen-ce on Rock Mech. Tokyo, 1995: 1313-1316.)
    [4]
    DASGUPTA B, DHAM R, LORIG L J. Three dimensional discontinue analysis of the underground power house for Sardar Sarovar Project, India[C]// Proc. of 8 th Int Conference on Rock Mech. Tokyo, 1995: 551-554.
    [5]
    DASGUPTA B, SHARMA M K V, VERMAN, et al. Design of underground caverns for Tehri Hydropower Project, India by numerical modeling[C]// Proc of 9 th Int Conference on Rock Mech. Pairs, 1991: 357-358.
    [6]
    LEE Y N, SUH Y H, KIM D Y, et al. Three-dimensional behavior of large rock caverns[C]// Proc.of 8 th Int. Conference on Rock Mechanics. Tokyo, 1995: 505-508.
    [7]
    付 敬, 董志宏, 丁秀丽, 等. 高地应力下深埋隧洞软岩段围岩时效特征研究[J]. 岩土力学, 2011, 32(增刊2): 444-448. (FU Jing, DONG Zhi-hong, DING Xi-uli, et al. Study of aging characteristics of soft surrounding rock in deep tunnel with high ground stress[J]. Rock and Soil Mechanics, 2011, 32(S2): 444-448. (in Chinese))
    [8]
    王水林, 李春光, 史贵才, 等. 小湾水电站地下厂房洞室群弹脆塑性分析[J]. 岩石力学与工程学报, 2005, 24(24): 4449-4454. (WANG Shui-lin, LI Chun-guang, SHI Gui-cai, et al. Analysis of underground powerhouses in Xiaowan Hydro-power station by elastic-brittle-plastic constitutive model[J]. Chinese Journal Rock Mechanics and Engineering, 2005, 24(24): 4449-4454. (in Chinese))
    [9]
    江 权, 冯夏庭, 陈国庆, 等. 高地应力下拉西瓦水电站地下洞室群稳定性分析[J]. 水利发电学报, 2010, 29(5): 132-140. (JIANG Quan, FENG Xia-ting, CHEN Guo-qing, et al. Stability analysis of large underground caverns in Laxiwa hydropower plant under high crustal stress[J]. Journal of Hydroelectric Engineering, 2010, 29(5): 132-140. (in Chinese))
    [10]
    罗 忆, 卢文波, 周创兵, 等. 高地应力条件下地下厂房开挖动态卸荷引起的变形突变机制研究[J]. 岩土力学, 2011, 32(5): 1553-1560. (LUO Yi, LU Wen-bo, ZHOU Chuang-bing, et al. Mechanism study of abrupt deformation of underground powerhouse induced by excavation unloading under high in-situstress[J]. Rock and Soil Mechanic, 2011, 32(5): 1553-1560. (in Chinese))
    [11]
    朱维申, 李 勇, 张 磊, 等. 高地应力条件下洞室群稳定性的地质力学模型实验研究[J]. 岩石力学与工程学报, 2008, 27(7): 1308-1314. (ZHU Wei-shen, LI Yong, ZHANG Lei, et al. Geomechanical model test on stability of cavern group under high crustal stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1308-1314. (in Chinese))
    [12]
    陈景涛, 朱进明, 苏国韶. 高地应力下地下洞室群开挖过程的数值模拟[J]. 华中科技大学学报, 2009, 26(4): 5-9. (CHEN Jing-tao, ZHU Jing-ming, SU Guo-shao. The numerical simulation of cavern group excavation under high crustal stress[J]. Journal of Huazhong University of Science and Technology, 2009, 26(4): 5-9. (in Chinese))
    [13]
    江 权, 冯夏庭, 陈建林. 锦屏二级水电站厂址区域三维地应力非线性反演[J]. 岩土力学, 2008, 29(11): 3003-3010. (JIANG Quan, FENG Xia-ting, CHEN Jian-lin. Nonlinear inversion of 3D initial geostress field in Jinping Ⅱ Hydropower Station region[J]. Rock and Soil Mechanics, 2008, 29(11): 3003-3010. (in Chinese))
  • Cited by

    Periodical cited type(7)

    1. 向成兵. 基于数值模拟的碾压混凝土重力坝坝体开裂原因研究. 水利科技与经济. 2025(01): 64-70 .
    2. 张春顺,林正鸿,杨典森,陈嘉瑞. 考虑初始级配影响的粗粒土非线性弹性模型研究. 岩土力学. 2025(03): 750-760 .
    3. 蔡新合,陈子玉,李国英. 考虑颗粒破碎能耗的堆石料剪胀方程及其应用. 水利水运工程学报. 2024(03): 127-135 .
    4. 庞元恩,石国栋,段煜,姚敏,吉浩泽,罗鸣,李茂彪,李旭. 基于搜索分析深度学习网络(SaNet)的粗粒土级配识别. 岩土工程学报. 2024(09): 1984-1993 . 本站查看
    5. 卢斌,郑雪玉,吴修锋,谢兴华,李艳伟,王照英. 特高堆石坝砾石土心墙非均质缺陷对渗流场影响分析. 水电与抽水蓄能. 2023(03): 22-25+39 .
    6. 熊治茗,杜俊,杨志全,沈兴刚. 筑坝堆石料三轴剪切特性及变形破坏试验研究. 水利与建筑工程学报. 2023(06): 107-113 .
    7. 王明昌. 高砾石土心墙堆石坝过渡料爆破直采技术分析. 新型工业化. 2022(11): 132-135 .

    Other cited types(4)

Catalog

    Article views (343) PDF downloads (260) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return