• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHENG Zhan-lin, PAN Jia-jun, ZUO Yong-zhen, HU Sheng-gang, CHENG Yong-hui. New experimental methods for engineering properties of overburden of dam foundation and their applications[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 18-23. DOI: 10.11779/CJGE2016S2003
Citation: CHENG Zhan-lin, PAN Jia-jun, ZUO Yong-zhen, HU Sheng-gang, CHENG Yong-hui. New experimental methods for engineering properties of overburden of dam foundation and their applications[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 18-23. DOI: 10.11779/CJGE2016S2003

New experimental methods for engineering properties of overburden of dam foundation and their applications

More Information
  • Received Date: May 18, 2016
  • Published Date: October 19, 2016
  • For many high rockfill dams, which are constructed or will be constructed in Southwest China, deep overburden is one of the most complex engineering problems. The deformation and stress status play an important role in the safety of dams. For the traditional methods, because it’s almost impossible to collect gravel overburden layer samples, the original density cannot be determined exactly. Thus, it is very difficult to get the reliable mechanical and seepage properties of overburden layer in laboratory tests. A new method that indirectly calculates the original density of overburden gravel using pressuremeter tests (PMT) or dynamic penetration tests (DPT) is proposed. In the construction period of Wudongde, this method is successfully applied to the determination of the density of overburden layer. Furthermore, based on the indoor model tests, it is verified that the correction factor of rod length in DPT follows the description of Newton elastic collision theory. Therefore, a new pressuremeter probe with high pressure and side expansion is developed in order to conduct the whole-process pressuremeter tests on deep overburden. The proposed whole set method provides an important technical support for further studies on the engineering properties of deep overburden of dam foundation.
  • [1]
    党林才, 方光达. 深厚覆盖层上建坝的主要技术问题[J]. 水力发电, 201l(37): 24-29. (DANG Lin-cai, FANG Guang-da. Technical problems of constructing dam on deep overburden[J]. Hydraulic Power Generation, 2011(37): 24-29. (in Chinese))
    [2]
    汪小刚, 刘小生, 陈 宁, 等. 深厚覆盖层力学特性测试技术研究[M]. 北京: 中国水利水电出版社, 2011. (WANG Xiao-gang, LIU Xiao-shen, CHEN Ning, et al. Researches on testing techniques for mechanical properties of deep overburden[M]. Beijing: China Water & Power Press, 2011. (in Chinese))
    [3]
    PALMER D, NIKROUZ R, SPYROU A. Statics corrections for shallow seismic refraction data[J]. Exploration Geophysics, 2005, 36: 7-17.
    [4]
    《工程地质手册》编委会. 工程地质手册[M]. 4版. 中国建筑工业出版社, 2007. (Engineering Geological Manuals Committee. Engineering geological manual[M]. 4th ed. Beijing: China Architecture and Building Press, 2007. (in Chinese))
    [5]
    李树武, 张国明, 聂德新. 西南地区河床覆盖层物理力学特性相关性研究[J]. 水资源与水工程学报, 2011, 22(3): 119-123. (LI Shu-wu, ZHANG Guo-ruing, NIE De-xin. Research on correlation of physics—mechanics characters in river bed overburden layer in southwest area[J]. Journal of Water Resources and Water Engineering, 201l, 22(3): 119-123. (in Chinese))
    [6]
    胡胜刚, 左永振, 饶锡保, 等. 基于模型试验的河床砂砾石层基本特性研究[J]. 长江科学院院报, 2012, 29(11): 55-58. (HU Sheng-gang, ZUO Yong-zhen, RAO Xi-bao, et al. Model test on the physical property of riverbed sand-gravel layer of dam foundation[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(11): 55-58. (in Chinese))
    [7]
    石修松, 程展林, 左永振, 等. 坝基深厚覆盖层密度辨识方法[J]. 岩土力学, 2011, 32(7): 2073-2078. (SHI Xiu-song, CHENG Zhan-lin, ZUO Yong-zhen, et a1. Density identification method of dam foundation deep overburden[J]. Rock and Soil Mechanics, 2011, 32(7): 2073-2078. (in Chinese))
    [8]
    左永振, 程展林, 丁红顺, 等. 动力触探杆长修正系数试验研究[J]. 岩土力学, 2014, 35(5): 1284-1288. (ZUO Yong-zhen, CHENG Zhan-lin, DING Hong-shun, et al. Study of modified coefficient of dynamic penetration rod length[J]. Rock and Soil Mechanics, 2014, 35(5): 1284-1288. (in Chinese))
    [9]
    JTJC20—2011公路工程地质勘察规范[S]. 2011. (JTJC20—201 Specifications for survey of highway engineering geology[S]. 2011. (in Chinese))
    [10]
    GBJ7—89 建筑地基基础设计规范[S]. 1989. (GBJ7—89 Code for design of building foundation[S]. 1989. (in Chinese))
    [11]
    ASTM D4633—86. Standard test method for stress wave energy measurement for dynamic penetrometer testing systems[S]. 1986.
    [12]
    黄熙龄. 旁压试验及粘性土形变模量的测定[C]// 第一届土力学及基础工程学术会议论文选集. 北京, 1964: 4-6. (HUANG Xi-ling. Determination of pressuremeter test and clay soil deformation modulus[C]// Proceedings of the First Symposium on Soil Mechanics and Foundation Engineering. Beijing, 1964: 4-6. (in Chinese))
  • Cited by

    Periodical cited type(12)

    1. 王鹏,王海,孙利琴,应本林,程熙洋,李永辉. 应力作用下黄泛区粉土的孔隙特征研究. 四川建筑科学研究. 2025(02): 60-69 .
    2. 武亚军,岳皓凡,臧学轲,张旭东,章长松,吴金红. 不同黏粒含量土的固结和重金属吸附解吸特性. 长江科学院院报. 2025(05): 88-96 .
    3. 李珊,李培勇. 硅酸钾溶液对黏性土体微观结构的影响研究. 广东建材. 2024(01): 9-13 .
    4. 王静,胡金虎,杨亚源,周邦龙,任帅. 分级循环荷载下粉土动力特性研究. 水利与建筑工程学报. 2024(06): 166-171 .
    5. 曹胜飞,刘月妙,谢敬礼,张奇,杨明桃,高玉峰. 高放废物处置缓冲材料砌块抗压强度特性试验研究. 世界核地质科学. 2023(01): 58-67 .
    6. 刘猛,许晨曦,孟凡会,高静静,白赟,宋琳琳. 粉土颗粒分析试验影响因素分析. 济南大学学报(自然科学版). 2023(04): 493-498 .
    7. 沈吴钦,吴昌将,张军,毛良根,仲栋宇. 深基坑模型试验中相似土配比及其微观表征研究. 人民长江. 2023(09): 236-244 .
    8. 张岩,樊亮,王林,侯佳林,谷传庆. 黏粒含量对粉土抗压强度的影响. 路基工程. 2022(01): 44-48 .
    9. 谌文武,贾博博,覃一伦,贾全全. 融雪入渗下含硫酸盐遗址土的冻融劣化特征. 兰州大学学报(自然科学版). 2022(04): 521-527 .
    10. 尹振华,张建明,张虎,王宏磊. 融化压缩下水泥改良冻土的微观孔隙特征演变. 水文地质工程地质. 2021(02): 97-105 .
    11. 付佳佳,王炼,尤苏南,王旭东. 黏-砂混合土压缩特性与微观结构特征关系研究. 长江科学院院报. 2021(05): 115-122 .
    12. 何建新,糟凯龙,杨海华. 塔里木河胡杨实现自我恢复的新方法探索. 水电能源科学. 2021(07): 33-37 .

    Other cited types(19)

Catalog

    Article views (323) PDF downloads (324) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return