• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
TANG Lin, TANG Xiao-wu, QU Shao-xing. Influence of biaxial tensile strains on pore size parameters of woven geotextiles[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 134-140. DOI: 10.11779/CJGE2016S1025
Citation: TANG Lin, TANG Xiao-wu, QU Shao-xing. Influence of biaxial tensile strains on pore size parameters of woven geotextiles[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 134-140. DOI: 10.11779/CJGE2016S1025

Influence of biaxial tensile strains on pore size parameters of woven geotextiles

More Information
  • Received Date: November 29, 2015
  • Published Date: March 24, 2016
  • The filtration applications of woven geotextiles are typically subjected to biaxial tensile strains. The pore size characteristics are important parameters in filtration design. Biaxial tensile strains can cause variations of pore size characteristics, which results in the failure of filtration. Depending on the microstructure of woven geotextiles, the variations of slit-films and pore sizes are analyzed. The mathematical model for strained microstructure of geotextiles is established. The analytical solutions of several pore size parameters corresponding to biaxial strains are proposed, including percent open area and analytical equivalent opening size. The equal biaxial tensile tests are carried out to verify the analytical solutions. The pore size parameters of three slit-film woven geotextiles subjected to different levels of strains are measured and analyzed through digital image analysis, including percent open area, pore size distributions and O95. The experimental results are compared with the analytical predictions. The analytical results correlate well with the experimental values and the rates of variations, and the pore size parameters change approximately linearly with the equal biaxial tensile strains.
  • [1]
    包承纲. 土工合成材料应用原理与工程实践[M]. 北京: 中国水利电力出版社, 2008. (BAO Cheng-gang. The principle and application of geosynthetics in engineering[M]. Beijing: China Water Power Press, 2008. (in Chinese))
    [2]
    CHU J, YAN SW, LI W. Innovative methods for dike construction-an overview [J]. Geotextiles and Geomembranes, 2012, 30(S1): 35-42.
    [3]
    YEE T W, LAWSON C R, WANG Z Y, et al. Geotextile tube dewatering of contaminated sediments, Tianjin Eco-City, China[J]. Geotextiles and Geomembranes, 2012, 32: 39-50.
    [4]
    刘伟超. 土工织物管袋充填特性及计算理论研究[D]. 杭州:浙江大学, 2012. (LIU Wei-chao. Study on properties and computation of filling geotextile tube[D]. Hangzhou: Zhejiang University, 2012. (in Chinese))
    [5]
    FOURIE A B, ADDIS P C. Changes in filtration opening size of woven geotextiles subjected to tensile loads[J]. Geotextiles and Geomembranes, 1999, 17(5): 331-340.
    [6]
    EDWARDS M, HSUAN G. Permittivity of geotextiles with biaxial tensile loads[C]// 9th International Conference on Geosynthetics, Brazil, 2010: 1135-1140.
    [7]
    ZHANG Y P, LIU W C, SHAO WY, et al. Experimental study on water permittivity of woven polypropylene geotextile under tension[J]. Geotextiles and Geomembranes, 2013, 37: 10-15.
    [8]
    刘伟超, 张仪萍, 杨广庆. 土工管袋充填特性模型试验研究[J]. 岩石力学与工程学报, 2013, 32(12): 2544-2549. (LIU Wei-chao, ZHANG Yi-ping, YANG Guang-qing. Model experimental study Filling Property of Geotextile Tube[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2544-2549. (in Chinese))
    [9]
    DIERICKX W. Opening size determination of technical textiles used in agricultural applications[J]. Geotextiles and Geomembranes, 1999, 17(4): 231-245.
    [10]
    TANG X W, TANG L, SHE W, et al. Prediction of pore size characteristics of woven slit-film geotextiles subjected to tensile strains[J]. Geotextiles and Geomembranes, 2013, 38: 43-80.
    [11]
    唐 琳, 唐晓武, 佘 巍, 等.单向拉伸对土工织物反滤性能影响的试验研究[J]. 岩土工程学报, 2013, 35(4): 785-788. (TANG Lin, TANG Xiao-wu, SHE Wei, et al. Influence of uniaxial tensile strain on filtration characteristics of geotextiles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 785-788. (in Chinese))
    [12]
    GIROUD J P. Biaxial tensile state of stress in geosynthetics[J]. Geotextiles and Geomembranes,1992, 11(3): 319-325.
    [13]
    GIROUD J P. Poisson's ratio of unreinforced geomembranes and nonwoven geotextiles subjected to large strains. Geotextiles and Geomembranes, 2004, 22(4): 297-305.
    [14]
    张思云, 张 艳, 靳向煜. 土工膜和非织造土工布单向与双向拉伸机理对比试验研究[J]. 东华大学学报(自然科学版), 2014, 40(2): 220-224. (ZHANG Si-yun, ZHANG Yan, JIN Xiang-yu. Comparison studies on unilateral and biaxial strength mechanism of geomembrane and nonwoven geotextiles[J]. Journal of Donghua University(Natural Science), 2014, 40(2): 220-224. (in Chinese))
    [15]
    邓国红, 余雄鹰, 汤爱华. 十字形双向拉伸试验有限元模拟及分析[J]. 重庆工学院学报(自然科学版), 2007, 5(2): 15-17, 46. (DENG Guo-hong, YU Xiong-ying, TANG Ai-hua. FEM Simulation and Analysis of Cruciform Biaxial Tensile Test[J]. Journal of Chongqing Institute of Technology (Natural Science Edition), 2007, 5(2): 15-17, 46. (in Chinese))
    [16]
    佘 巍, 唐晓武. 用图像分析法研究有纺土工织物单向受拉时孔径的变化[J]. 岩土工程学报, 2012, 34(8): 1522-1526. (SHE Wei, TANG Xiao-wu. Research on changes of pore size of woven geotextiles affected by uniaxial tension using image analysis method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1522-1526. (in Chinese))
    [17]
    唐 琳. 拉应变对土工织物孔径特征及反滤性能影响的研究[D]. 杭州: 浙江大学, 2014. (TANG Lin. Pore size characteristics and filtration properties of geotextiles subjected to tensile strains[D]. Hangzhou: Zhejiang University, 2014. (in Chinese))
  • Related Articles

    [1]DENG Huafeng, WANG Wendong, LI Jianlin, FENG Yunjie, LI Guanye, QI Yu, CHEN Xingzhou. Damage effects and model for jointed rock mass under water-rock interaction and repeated shear sequence[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 503-511. DOI: 10.11779/CJGE20211510
    [2]LI Ren-jie, JI Feng, FENG Wen-kai, WANG Dong-po, ZHANG Jin-ming. Shear creep characteristics and constitutive model of hidden non-persistent joints[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2253-2261. DOI: 10.11779/CJGE201912010
    [3]LIU Wu. Coupled damage and friction model for persistent fractured rocks considering multi-scale structures[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 147-154. DOI: 10.11779/CJGE201801015
    [4]LIU Hong-yan. Reply to discussion on“A dynamic damage constitutive model for rock masswith non-persistent joints under uniaxial compression”[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1931-1931.
    [5]LI Lie-lie, ZHUO Li, LIU Zhi-yong. Discussion on“A dynamic damage constitutive model for rock mass with non-persistent joints under uniaxial compression”[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1930-1931. DOI: 10.11779/CJGE201610025
    [6]LIU Hong-yan, WANG Xin-sheng, ZAHNG Li-min, ZHANG Li-guo. A dynamic damage constitutive model for rock mass with non-persistent joints under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 426-436. DOI: 10.11779/CJGE201603005
    [7]YUAN Xiao-qing, LIU Hong-yan, LIU Jing-ping. 3-D constitutive model for rock masses with non-persistent joints based on compound damage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 91-99. DOI: 10.11779/CJGE201601009
    [8]Numerical simulation of a new damage rheology model for jointed rock mass[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [9]LIU Yuanming, XIA Caichu. Study on models and strength behavior of rock mass containing discontinuous joints in direct shear[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1242-1247.
    [10]Zhang Wu, Zhang Xianhong. Elastic Models of Jointed Rock Masses[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(4): 33-44.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return