• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Sheng, XU Shuo, XIONG Yong-lin, ZHANG Feng. Thermo-elasto-viscoplastic model for soft rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2278-2286. DOI: 10.11779/CJGE201612017
Citation: ZHANG Sheng, XU Shuo, XIONG Yong-lin, ZHANG Feng. Thermo-elasto-viscoplastic model for soft rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2278-2286. DOI: 10.11779/CJGE201612017

Thermo-elasto-viscoplastic model for soft rock

More Information
  • Received Date: October 10, 2015
  • Published Date: December 24, 2016
  • In the construction of many geotechnical projects, such as nuclear waste disposal and geothermal extraction and storage, it is necessary to consider the long-term mechanical properties of soft rock. Furthermore, the evaluated temperature will cause a complicated influence on the creep damage behaviors of soft rock. In consequence, it is theoretically and practically meaningful to establish a constitutive model which can describe the creep damage behaviors. Within the framework of continuum mechanics, a thermo-visco-elastoplastic model is proposed based on the sub-loading Cam-clay model and the concept of equivalent stress. Triaxial creep tests on Tage stone under different confining pressures are conducted by using the self-developed apparatus. Compared with the numerical results, the experimental results exhibit that for a certain stress state, an optimum temperature exists, which will slow down the creep damage rate the most. In addition, both retarding and accelerating effects on creep rupture due to limited warming are observed for the same material, and this phenomenon can be predicted by the proposed model. Finally, model characteristics are analyzed, and the influence of material parameters on creep laws is discussed.
  • [1]
    LALOUI L, MODARESSI H. Modelling of the thermo-hydro-plastic behaviour of clays[C]// HOTEIT N, ed. Hydro Mechanical and Thermohydromechanical Behaviour of Deep Argillaceous Rock. Rotterdam: Balkema, 2002: 161-170.
    [2]
    DELAGE P, SULTAN N, CUI Y J. On the thermal consolidation of Boom clay[J]. Canadian Geotechnical Journal, 2000, 37(2): 343-354.
    [3]
    刘泉声, 许锡昌, 出口勉, 等. 三峡花岗岩与温度及时间相关的力学性质试验研究[J]. 岩石力学与工程学报, 2001, 20(5): 715-719. (LIU Quan-sheng, XU Xi-chang, TSUTOMO Y, et al. Testing study on mechanical properties of the three gorges granite concerning temperature and time[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(5): 715-719. (in Chinese))
    [4]
    宋世雄, 张建民. 砂土流变行为的热力学本构模型研究[J]. 岩土工程学报, 2015, 37(增刊1): 129-133. (SONG Shi-xiong, ZHANG Jian-min. Thermodynamic constitutive model for rheological behavior of sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 129-133. (in Chinese))
    [5]
    梁玉雷, 冯夏庭, 周 辉, 等. 温度周期作用下大理岩三轴蠕变试验与理论模型研究[J]. 岩土力学, 2010, 31(10): 3107-3112. (Liang Yu-lei, Feng Xia-ting, Zhou Hui, et al. Research on triaxial creep experiment and theoretical model of marble under cyclic temperatures[J]. Rock & Soil Mechanics, 2010, 31(10): 3107-3112. (in Chinese))
    [6]
    CAMPANELLA R G, MITCHELL J K. Influence of temperature variations on soil behavior[J]. Journal of Soil Mechanics and Foundations Engineering Division, ASCE, 1968, 94(3): 709-734.
    [7]
    HABIBAGAHI K. Temperature effect and the concept of effective void ratio[J]. Indian Geotechnical Journal, 1977, 7(1): 14-34.
    [8]
    AKAGI H, KOMIYA K. Constant rate of strain consolidation properties of clayey soil at high temperature[C]// Compression and Consolidation of Clayey Soils. Rotterdam: Balkema, 1995: 3-8.
    [9]
    SHIMIZU M. Quantitative assessment of thermal acceleration of time effects in one-dimensional compression of clays[C]// Deformation Characteristics of Geomaterials. Lyon, 2003: 479-487.
    [10]
    DE BRUYN D, THIMUS J F. The influence of temperature on mechanical characteristics of Boom clay: the results of an initial laboratory programme[J]. Engineering Geology, 1996, 41(1): 117-126.
    [11]
    CUI Y J, LE T T, TANG A M, et al. Investigating the time-dependent behaviour of Boom clay under thermo-mechanical loading[J]. Géotechnique, 2009, 59: 319-29.
    [12]
    高小平, 杨春和, 吴 文, 等. 盐岩蠕变特性温度效应的实验研究[J]. 岩石力学与工程学报, 2005, 24(12): 2054-2059. (GAO Xiao-ping, YANG Chun-he, WU Wen, et al. Experimental studies on temperature dependent properties of creep of rock salt[J]. Chinese Journal of Rock Mechanics & Engineering, 2005, 24(12): 2054-2059. (in Chinese))
    [13]
    OKADA T. Mechanical properties of sedimentary soft rock at high temperature. Part 2. Evaluation of temperature dependency of creep behavior based on unconfined compression test[R]. Chiba: Central Research Institute of Electric Power Industry, 2006. (in Japanese)
    [14]
    李剑光, 王永岩. 软岩蠕变的温度效应及实验分析[J]. 煤炭学报, 2012, 37(增刊1): 81-85. (LI Jian-guang, WANG Yong-yan. Experimental analysis of temperature effect in creep of soft rock[J]. Journal of China Coal Society, 2012, 37(S1): 81-85. (in Chinese))
    [15]
    龚 哲, 陈卫忠, 于洪丹, 等. 基于下加载面概念的饱和黏土温度-应力耦合弹塑性模型[J]. 岩石力学与工程学报, 2015. (GONG Zhe, CHEN Wei-zhong, YU Hong-dan, et al. Thermo-elasto-plastic model for saturated clay based on the concept of sub-loading surface[J]. Chinese Journal of Rock Mechanics & Engineering, 2015. (in Chinese))
    [16]
    YASHIMA A, LEROUEIL S, OKA F, et al. Modelling temperature and strain rate dependent behavior of clays: One dimensional consolidation[J]. Soils and Foundations, 1998, 38(2): 63-73.
    [17]
    高 峰, 徐小丽, 杨效军, 等. 岩石热黏弹塑性模型研究[J]. 岩石力学与工程学报, 2009, 28(1): 74-80. (GAO Feng, XU Xiao-li, YANG Xiao-jun, et al. Research on thermo-visco-elastoplastic model of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1): 74-80. (in Chinese))
    [18]
    王春萍, 陈 亮, 梁家玮, 等. 考虑温度影响的花岗岩蠕变全过程本构模型研究[J]. 岩土力学, 2014, 35(9): 2493-2501. (WANG Chun-ping, CHEN Liang, LIANG Jia-wei, et al. Creep constitutive model for full creep process of granite considering thermal effect[J]. Rock and Soil Mechanics, 2014, 35(9): 2493-2501. (in Chinese))
    [19]
    MODARESSI H, LALOUI L. A thermo-viscoplastic constitutive model for clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(5): 313-335.
    [20]
    HASHIGUCHI K. Elasto-plastic constitutive laws of granular materials, constitutive equations of soils[C]// Constitutive Equations of Soils, Proc. 9th Int. Conf. Soil Mech. Found. Eng., Spec. Session 9. Tokyo, 1977: 73-82.
    [21]
    YAMAKAWA Y, HASHIGUCHI K, IKEDA K. Implicit stress-update algorithm for isotropic Cam-clay model based on the subloading surface concept at finite strains[J]. International Journal of Plasticity, 2010, 26(5): 634-658.
    [22]
    ZHANG S, LENG W, ZHANG F, et al. A simple thermo-elastoplastic model for geomaterials[J]. International Journal of Plasticity, 2012, 34: 93-113.
    [23]
    ZHANG S, ZHANG F. A thermo-elasto-viscoplastic model for soft sedimentary rock[J]. Soils and Foundations, 2009, 49(4): 583-595.
    [24]
    ZHANG F, YASHIMA A, NAKAI T, et al. An elasto-viscoplastic model for soft sedimentary rock based on tij concept and subloading yield surface[J]. Soils and foundations, 2005, 45(1): 65-73.
    [25]
    SHARIATMADARI N, SAEIDIJAM S. The effect of thermal history on thermo-mechanical behavior of bentonite-sand mixture[J]. International Journal of Civil Engineering, 2012, 10(2): 162-167.
  • Cited by

    Periodical cited type(12)

    1. 王鹏,王海,孙利琴,应本林,程熙洋,李永辉. 应力作用下黄泛区粉土的孔隙特征研究. 四川建筑科学研究. 2025(02): 60-69 .
    2. 武亚军,岳皓凡,臧学轲,张旭东,章长松,吴金红. 不同黏粒含量土的固结和重金属吸附解吸特性. 长江科学院院报. 2025(05): 88-96 .
    3. 李珊,李培勇. 硅酸钾溶液对黏性土体微观结构的影响研究. 广东建材. 2024(01): 9-13 .
    4. 王静,胡金虎,杨亚源,周邦龙,任帅. 分级循环荷载下粉土动力特性研究. 水利与建筑工程学报. 2024(06): 166-171 .
    5. 曹胜飞,刘月妙,谢敬礼,张奇,杨明桃,高玉峰. 高放废物处置缓冲材料砌块抗压强度特性试验研究. 世界核地质科学. 2023(01): 58-67 .
    6. 刘猛,许晨曦,孟凡会,高静静,白赟,宋琳琳. 粉土颗粒分析试验影响因素分析. 济南大学学报(自然科学版). 2023(04): 493-498 .
    7. 沈吴钦,吴昌将,张军,毛良根,仲栋宇. 深基坑模型试验中相似土配比及其微观表征研究. 人民长江. 2023(09): 236-244 .
    8. 张岩,樊亮,王林,侯佳林,谷传庆. 黏粒含量对粉土抗压强度的影响. 路基工程. 2022(01): 44-48 .
    9. 谌文武,贾博博,覃一伦,贾全全. 融雪入渗下含硫酸盐遗址土的冻融劣化特征. 兰州大学学报(自然科学版). 2022(04): 521-527 .
    10. 尹振华,张建明,张虎,王宏磊. 融化压缩下水泥改良冻土的微观孔隙特征演变. 水文地质工程地质. 2021(02): 97-105 .
    11. 付佳佳,王炼,尤苏南,王旭东. 黏-砂混合土压缩特性与微观结构特征关系研究. 长江科学院院报. 2021(05): 115-122 .
    12. 何建新,糟凯龙,杨海华. 塔里木河胡杨实现自我恢复的新方法探索. 水电能源科学. 2021(07): 33-37 .

    Other cited types(19)

Catalog

    Article views (389) PDF downloads (284) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return