• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
RAO Yu, ZHAO Gen, WU Xin-xia, XIA Yuan-you, LIU Mei-shan. Propagation characteristics of stress waves across viscoelastic joints[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2237-2245. DOI: 10.11779/CJGE201612012
Citation: RAO Yu, ZHAO Gen, WU Xin-xia, XIA Yuan-you, LIU Mei-shan. Propagation characteristics of stress waves across viscoelastic joints[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2237-2245. DOI: 10.11779/CJGE201612012

Propagation characteristics of stress waves across viscoelastic joints

More Information
  • Received Date: October 21, 2015
  • Published Date: December 24, 2016
  • The study on the propagation characteristics of stress waves is crucial to estimate the dynamic stability of project construction. Based on the excavation blasting tests on the basalt rock mass with columnar joints and considering the creep and stress relaxation characteristics of rock, an equivalent standard linear solid model for rock mass joints is proposed. By using the displacement discontinuity method, the propagation equation for obliquely incident stress waves across viscoelastic joints is carried out. Then the propagation characteristics are studied. The reflection coefficient increases with the increase of the frequency of incident waves, but the transmission coefficient decreases rapidly. As the incident angle increases within the critical angle, the transmission coefficient of converted waves (Tsp or Tps) has the smallest value and increases at first then decreases, while the reflection coefficient of converted waves (Rsp or Rps), and Rss(Rpp) decreases at first then increases, but Tss(Tpp) basically has no change. Complex energy transfer happens when the stress waves cross the viscoelastic joints. The energy between Rss(Rpp) and Rsp(Rps) transfers to each other, then reaches their extreme points almost together when the incident angle is close to a certain value. The energy of the same kind of waves is been transferred to that of converted waves as the incident angle increases. But the same kind of waves have much more energy than the converted waves all the way.
  • [1]
    LI J C, MA G W, ZHAO J. An equivalent viscoelastic model for rock mass with parallel joints[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 2010, 115(B03305).
    [2]
    LI J C, MA G W, HUANG X. Analysis of wave propagation through a filled rock joint[J]. Rock Mechanics and Rock Engineering, 2010, 43(6): 789-798.
    [3]
    LI J C, MA G W. Analysis of blast wave interaction with a rock joint[J]. Rock Mechanics and Rock Engineering, 2010, 43(6): 777-787.
    [4]
    CAI J G, ZHAO J. Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 661-682.
    [5]
    PYRAK-NOLTE L J. Seismic response of fractures and the interrelations among fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 1996, 33(8): 787-802.
    [6]
    PYRAK-NOLTE L J, MORRIS J P. Single fractures under normal stress: The relation between fracture specific stiffness and fluid flow[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(1): 245-262.
    [7]
    ZHAO J, ZHAO X B, CAI J G. A further study of P-wave attenuation across parallel fractures with linear deformational behaviour[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(5): 776-788.
    [8]
    ZHAO J, CAI J G. Transmission of elastic P-waves across single fractures with a nonlinear normal deformational behavior[J]. Rock Mechanics and Rock Engineering, 2001, 34(1): 3-22.
    [9]
    ZHAO X B, ZHAO J, CAI J G. P-wave transmission across fractures with nonlinear deformational behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30: 1097-1112.
    [10]
    ZHU J B, PERINO A, ZHAO G F, et al. Seismic response of a single and a set of filled joints of viscoelastic deformational behaviour[J]. Geophysical Journal International, 2011, 186(3): 1315-1330.
    [11]
    彭府华, 李庶林, 程建勇, 等. 中尺度复杂岩体应力波传播特性的微震试验研究[J]. 岩土工程学报, 2014, 36(2): 312-319. (PENG Fu-hua, LI Shu-lin, CHENG Jian-yong, et al. Experimental study on characteristics of stress wave propagation in mesoscale and complex rock mass by microseismic monitoring[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 312-319. (in Chinese))
    [12]
    刘婷婷, 李建春, 李海波, 等. 接触面积对波传播规律及节理力学特性影响[J]. 岩石力学与工程学报, 2014, 33(9): 1749-1755. (LIU Ting-ting, LI Jian-chun, LI Hai-bo, et al. Effects of contact area on stress wave propagation and joint mechanical properties[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1749-1755. (in Chinese))
    [13]
    刘婷婷, 李建春, 李海波, 等. 非线性节理模型对应力波传播影响的数值分析[J]. 岩石力学与工程学报, 2015, 34(5): 953-959. (LIU Ting-ting, LI Jian-chun, LI Hai-bo, et al.(Numerical analysis on effect of nonlinear joints on propagation of stress wave[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(5): 953-959. (in Chinese))
    [14]
    PYRAK-NOLTE L J, MYER L R, COOK N G W. Anisotropy in seismic velocities and amplitudes from multiple parallel fractures[J]. Journal of Geophysical Research, 1990, 95(B7): 11345-11358.
    [15]
    王礼立. 应力波基础[M]. 北京: 国防工业出版社, 2010: 148-165. (WANG Li-li. Foundation of stress waves[M]. Beijing: National Defense Industry Press, 2010: 148-165. (in Chinese))
    [16]
    王 飞. 位移不连续法及其在岩体工程中的应用[D]. 上海: 上海交通大学, 2010. (WANG Fei. Displacement discontinuity method and its application in rock engineering[D]. Shanghai: Shanghai JiaoTong University, 2010. (in Chinese))
    [17]
    GU B, SUÁREZ-RIVERA R, NIHEI K T, et al. Incidence of plane waves upon a fracture[J]. Journal of Geophysical Research, 1996, 101(B11): 25337-25346.
    [18]
    GU B, NIHEI K T, MYER L R, et al. Fracture interface waves[J]. Journal of Geophysical Research, 1996, 101(B1): 827-835.
  • Cited by

    Periodical cited type(8)

    1. 王亚军,白晨帆,蒋应军,李瀚盛,范江涛,袁可佳. 挤密桩对大厚度黄土地基浸水沉降的影响. 铁道建筑. 2025(02): 126-133 .
    2. 李琳,王家鼎,谷琪,张登飞,焦少通. 古土壤层间富水对黄土场地湿陷性的影响. 西北大学学报(自然科学版). 2024(01): 72-83 .
    3. 黄华,刘瑞阳,刘笑笑,柳明亮. 黄土湿陷特性及其改性方法研究进展. 建筑科学与工程学报. 2024(02): 1-16 .
    4. 雷勇. 高压喷射气体劈裂湿陷性黄土效果研究. 铁道建筑技术. 2024(06): 20-24 .
    5. 胡锦方,潘亮,张爱军,任文渊,梁志超. 棉秆纤维EPS颗粒轻量土配合比设计. 水利水运工程学报. 2023(01): 112-119 .
    6. 徐硕昌,刘德仁,王旭,安政山,张转军,金芯. 重塑非饱和黄土浸水入渗规律的模型试验研究. 水利水运工程学报. 2023(01): 140-148 .
    7. 牛丽思,张爱军,王毓国,任文渊,张婉. 湿度和密度变化下伊犁黄土的压缩和湿陷特性. 水力发电学报. 2021(02): 167-176 .
    8. 王文辉,何毅,张立峰,陈有东,唐源蔚,邱丽莎,张新秀. 基于PS-InSAR和GeoDetector的兰州主城区地表变形监测与驱动力分析. 兰州大学学报(自然科学版). 2021(03): 382-388+394 .

    Other cited types(8)

Catalog

    Article views (313) PDF downloads (260) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return