• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Qian, LIU Hong-mei, MA Hai-ping, WANG Jun, LI Na. Liquefaction behavior and mechanism of cement-stabilized loess[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2128-2134. DOI: 10.11779/CJGE201611025
Citation: WANG Qian, LIU Hong-mei, MA Hai-ping, WANG Jun, LI Na. Liquefaction behavior and mechanism of cement-stabilized loess[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2128-2134. DOI: 10.11779/CJGE201611025

Liquefaction behavior and mechanism of cement-stabilized loess

More Information
  • Received Date: January 03, 2016
  • Published Date: November 19, 2016
  • Using modification treatment to reduce the liquefaction potential of saturated loess, on the basis of SEM tests and dynamic triaxial tests on the cement-stabilized loess with different proportions, the evolution laws of its dynamic residual strain and pore water pressure are obtained, and its physical and chemical mechanism are analyzed. In addition, the optimum proportion of the cement-stabilized loess is suggested based on the test results. The results show that the cement modification treatment leads to clotted cementation structure in the soil, which optimizes the pore distribution in the soil and increases the structural strength of the loess. The anti-liquefaction stability of the cement-stabilized loess foundation is improved by the compact effect of the cement to the soil, the cementation effect of loess structures caused by adding cement to increase fine particles and ion exchange and the adsorption effect of free water caused by the increase of clay in the soil. The dynamic residual strain and pore water pressure of the cement-stabilized loess increase slowly with the increase of vibration times when the cement content is larger than 3%. Their peak values are the smallest when the cement content is 5%, which shows that 5% is the optimum proportion of anti-liquefaction treatment for the cement-stabilized loess foundation.
  • [1]
    王兰民, 石玉成, 刘 旭, 等. 黄土动力学[M]. 北京: 地震出版社, 2003: 85-143. (WANG Lan-min, SHI Yu-cheng, LIU Xu, et al. Loess dynamics[M]. Beijing: Seismological Press, 2003: 85-143. (in Chinese))
    [2]
    王 谦, 王 峻, 钟秀梅, 等. 黄土高原河谷城市潜在地震液化特征及灾害预测[J]. 土木工程学报, 2014, 47(增刊1): 301-306. (WANG Qian, WANG Jun, ZHONG Xiu-mei, et al. Soil liquefaction characteristics and disaster prediction of the valley cities in the Loess Plateau[J]. China Civil Engineering Journal, 2014, 47(S1): 301-306. (in Chinese))
    [3]
    刘汉龙, 佘跃心, 王兰民. 强夯黄土地基液化试验研究[C]//土动力学与岩土地震工程. 北京: 中国建筑工业出版社, 2002: 218-223. (LIU Han-long, SHE Yue-xin, WANG Lan-min. Liquefaction experimental research of dynamic compacted loess foundation[C]// Soil Dynamics and Geotechnical Earthquake Engineering. Beijing: China Architecture & Building Press, 2002: 218-223. (in Chinese))
    [4]
    何开明. 经若干方法处理黄土地基抗液化性状的研究[D].杭州: 浙江大学, 2001. (HE Kai-ming. Studies on the anti-liquefaction behavior of the loess ground improved by several method[D]. Hangzhou: Zhejiang University, 2001. (in Chinese))
    [5]
    王 谦, 王兰民, 王 峻, 等. 基于密度控制理论的饱和黄土地基抗液化处理指标研究[J]. 岩土工程学报, 2013, 35(增刊2): 844-847. (WANG Qian, WANG Lan-min, WANG Jun, et al. Indices of anti-liquefaction treatment of saturated compacted loess foundation based on theory of density control[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 844-847. (in Chinese))
    [6]
    何开明, 周 健, 王兰民. 化学灌浆黄土地基的抗液化性状研究[J]. 地震研究, 2003, 26(4): 396-399. (HE Kai-ming, ZHOU Jian, WANG Lan-min. Research on the anti-liquefaction behavior of loess subsoil improved by chemical grouting[J]. Journal of Seismological Research, 2003, 26(4): 396-399. (in Chinese))
    [7]
    李满良, 杨朝阳. 水泥黄土的工程特性探讨[J]. 山西建筑, 2012, 38(30): 63-64. (LI Man-liang, YANG Zhao-yang. Research on the properties of the cement-1oess[J]. Shanxi Architecture, 2012, 38(30): 63-64. (in Chinese))
    [8]
    蒋关鲁, 房立凤, 张俊兵, 等. 高速水泥改良黄土路基填料填筑试验研究[J]. 中国铁道科学, 2009, 30(1): 1-7. (JIANG Guan-lu, FANG Li-feng, ZHANG Jun-bing, et a1. Test study on cement improved loess as the filling material for subgrade construction of passenger dedicated line[J]. China Railway Science, 2009, 30(1): 1-7. (in Chinese))
    [9]
    刘保健, 陈鹏郎, 达 马. 水泥黄土的应力-应变本构方程[J]. 西安公路交通大学学报, 1999, 19(3): 27-30. (LIU Bao-jian, CHEN Peng-lang, DA Ma. The stress-strain constitutional equation of loess-cement[J]. Journal of Xi'an Highway University, 1999, 19(3): 27-30. (in Chinese))
    [10]
    张军丽, 刘保健. 水泥黄土的力学特性试验研究[J]. 西安公路交通大学学报, 1999, 19(2): 6-9. (ZHANG Jun-li, LIU Bao-jian. The experiment research on the characterics of cement loess[J]. Journal of Xi’an Highway University, 1999, 19(2): 6-9. (in Chinese))
    [11]
    任 新, 杨有海. 水泥搅拌饱和黄土强度特性试验研究[J]. 兰州工业学院学报, 2014, 21(3): 33-36. (REN Xin, YANG You-hai. Experimental study on strength of mixed cement with saturated loess[J]. Journal of Lanzhou Institute of Technology, 2014, 21(3): 33-36. (in Chinese))
    [12]
    王家鼎, 彭淑君, 马 闫, 等. 高速列车振动荷载下水泥改良黄土动力学试验[J]. 地震工程学报, 2013, 35(1): 35-41. (WANG Jia-ding, PENG Shu-jun, MA Yan, et al. Dynamic tests on the cement—improved loess under the vibratory load[J]. China Earthquake Engineering Journal, 2013, 35(1): 35-41. (in Chinese))
    [13]
    王毅敏, 梁 波, 马学宁, 等. 水泥改良黄土在高速铁路路基中的试验研究[J]. 兰州交通大学学报(自然科学版), 2005, 24(4): 28-31. (WANG Yi-min, LIANG Bo, MA Xue-ning, et al. Experimental study of cement- loess for high- speed railway embankment[J]. Journal of Lanzhou Jiaotong University (Natural sciences), 2005, 24(4): 28-31. (in Chinese))
    [14]
    刘红玫, 高 鹏. 不同配比水泥黄土强度的试验研究[J]. 西北地震学报, 2013, 35(增刊): 139-142. (LIU Hong-mei, GAO Peng. Test research on the strength of cement loess of different ratio[J]. Northwest Seismological Journal, 2013, 35(S0): 139-142. (in Chinese))
    [15]
    SL237—032—1999 土工试验规程[S]. 1999. (SL237—032—1999 Specification of soil test[S]. 1999. (in Chinese))
    [16]
    雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学(化学), 1987, 17(12): 1309-1316. (LEI Xiang-yi. Pore types of Chinese loess and its collapsibility[J]. Science in China, (SER.B), 1987, 17(12): 1309-1316. (in Chinese))
    [17]
    王银梅, 张咸恭. 水泥对黄土湿陷灾害防治的机理分析[J]. 中国地质灾害与防治学报, 1995, 6(2): 50-53 (WANG Yin-mei, ZHANG Xian-gong. Analysis on controlling mechanism of loess collapse disaster of cement[J]. The Chinese Journal of Geological Hazard and Control, 1995, 6(2): 50-53. (in Chinese))
    [18]
    王银梅. 水泥黄土增强措施初探[J]. 太原理工大学学报, 1998, 29(1): 95-98. (WANG Yin-mei. Preliminary study on measures increasing strength of loess-cement[J]. Journal of Taiyuan University of Technology, 1998, 29(1): 95-98. (in Chinese))
    [19]
    谷天峰, 孙忠弟, 骆凤涛, 等. 水泥–黄土注浆充填材料的试验研究[J]. 工程地质学报, 2014, 22(1): 98-105. (GU Tian-feng, SUN Zhong-di, LUO Feng-tao, et al. Experimental research on loess grouting material for coal gob filling[J]. Journal of Engineering Geology, 2014, 22(1): 98-105. (in Chinese))
    [20]
    郭 星, 张齐齐, 刘博榕, 等. 水泥改良黄土试验研究[J]. 地下水, 2015, 37(3): 223-225. (GUO Xin, ZHANG Qi-qi, LIU Bo-rong, et al. Experimental investigation on cement-stabilized loess[J]. Ground Water, 2015, 37(3): 223-225. (in Chinese))
    [21]
    王 平, 王 谦, 王兰民, 等. 黄土室内液化试验饱和方法的研究现状及前景展望[J]. 世界地震工程, 2011, 27(4): 86-90. (WANG Ping, WANG Qian, WANG Lan-min, et al. Status quo and prospect of research on saturated methods in loess liquefaction test[J]. World Earthquake Engineering, 2011, 27(4): 86-90. (in Chinese))
    [22]
    刘潇敏, 何小亮. 水泥改良黄土力学特性试验研究[J]. 地下水, 2011, 33(5): 147-149. (LIU Xiao-min, HE Xiao-liang. Experiment study on mechanical properties of cement loess[J]. Ground Water, 2011, 33(5): 147-149. (in Chinese))
  • Cited by

    Periodical cited type(1)

    1. 李华章,覃泽华. 颗粒形状对粗粒土K_0压缩特性影响的离散元分析. 陕西地质. 2024(02): 107-113 .

    Other cited types(4)

Catalog

    Article views (329) PDF downloads (317) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return