• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
KE Han, WU Xiao-wen, ZHANG Jun, CHEN Yun-min, HU-Jie. Modeling saturated permeability of municipal solid waste based on compression change of its preferential flow and anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1957-1964. DOI: 10.11779/CJGE201611004
Citation: KE Han, WU Xiao-wen, ZHANG Jun, CHEN Yun-min, HU-Jie. Modeling saturated permeability of municipal solid waste based on compression change of its preferential flow and anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1957-1964. DOI: 10.11779/CJGE201611004

Modeling saturated permeability of municipal solid waste based on compression change of its preferential flow and anisotropy

More Information
  • Received Date: December 13, 2015
  • Published Date: November 19, 2016
  • It is generally accepted that landfilled municipal solid waste(MSW)exhibits heterogeneity and anisotropy because of the diverse composition and the layered placement, causing that the distribution of pores prefers to be horizontal. In the landfill, the preferential flow is obvious, and the anisotropy is significantly affected by the overburden pressure. According to the changes of pore shape, pore size distribution and pore alignment under compression, a saturated permeability model is derived based on the Poiseuille equation, which mainly relates to the dominant flow and its anisotropy. The pore distribution changes of fresh MSW are revealed. Under the overburden pressure of 0~200 kPa, with the collapse of larger pores, the pore average size and drainable porosity decrease according to the negative exponent, and the pore alignment tends to be horizontal. When calculated by the new model, the drainable porosity can well simulate the variation of permeability. The preferential flow is dominated by the large pores. Under the overburden pressure of 0~600 kPa, the saturated horizontal permeability of fresh MSW is in the range of 10-2~10-5 cm/s. The formula for the permeability anisotropy is given. The calculated permeability anisotropy of fresh MSW increases for the correction to the direction of pore alignment. Under the overburden pressure of 0~600 kPa, the value is in the range of 1~10.
  • [1]
    陈云敏, 王立忠, 胡亚元, 等. 城市固体垃圾填埋场边坡稳定分析[J]. 土木工程学报, 2000, 33(3): 92-97. (CHEN Yun-min, WANG Li-zhong, HU Ya-yuan, et al. Analysis on slope stability of municipal solid waste landfill[J]. Chinese Journal of Civil Engineering, 2000, 33(3): 92-97. (in Chinese))
    [2]
    BURROWS M R. Landfill hydrogeology and the hydraulic properties of in situ landfilled material[D]. London: Royal Holloway, University of London, 1998.
    [3]
    柯 瀚, 冉 龙, 陈云敏, 等. 垃圾体渗透性试验及填埋场水文分析研究[J]. 岩土工程学报, 2006, 28(5): 631-634. (KE Han, RAN Long, CHEN Yun-min, et al. Study on MSW filtration experimentation and landfill hydrologic analysis[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 631-634. (in Chinese))
    [4]
    BLEIKER D E, MCBEAN E, FARQUHAR G. Refuse sampling and permeability testing at the Brock West and Keele Valley landfills[C]// 1993: 548-548.
    [5]
    POWRIE W, BEAVEN R P. Hydraulic properties of household waste and implications for landfills[J]. Proceedings of the ICE-Geotechnical Engineering, 1999, 137(4): 235-247.
    [6]
    STOLTZ G, GOURC J P, OXARANGO L. Liquid and gas permeabilities of unsaturated municipal solid waste under compression[J]. Journal of Contaminant Hydrology, 2010, 118(1): 27-42.
    [7]
    WOODMAN N D, REES-WHITE T C, STRINGFELLOW A M, et al. Investigating the effect of compression on solute transport through degrading municipal solid waste[J]. Waste Management, 2014, 34(11): 2196-2208.
    [8]
    柯 瀚, 王文芳, 魏长春, 等. 填埋体饱和渗透系数影响因素室内研究[J]. 浙江大学学报, 2013, 47(7): 1164-1177. (KE Han, WANG Wen-fang, WEI Chang-chun, et al. Experimental study on saturated hydraulic conductivity of MSW under different conditions[J]. Chinese Journal of ZheJiang University, 2013, 47(7): 1164-1177. (in Chinese))
    [9]
    詹良通, 徐 辉, 兰吉武, 等. 填埋垃圾渗透特性室内外测试研究[J]. 浙江大学学报, 2014, 48(3): 478-486. (ZHAN Lang-tong, XU Hui, LAN Ji-wu, et al. Field and laboratory study on hydraulic conductivity of MSW[J]. Chinese Journal of Zhejiang University, 2014, 48(3): 478-486. (in Chinese))
    [10]
    OWEIS I S, SMITH D A, ELLWOOD R B, et al. Hydraulic characteristics of municipal refuse[J]. Journal of Geotechnical Engineering, 1990, 116(4): 539-553.
    [11]
    JAIN P, POWELL J, TOWNSEND T G, et al. Estimating the hydraulic conductivity of landfilled municipal solid waste using borehole permeameter test[J]. Journal of Environmental Engineering, ASCE, 2006, 132(6): 645-653.
    [12]
    刘 钊. 填埋垃圾渗透特性测试及抽排竖井渗流分析[D].杭州: 浙江大学, 2012. (LIU Zhao. Experimental study on hydraulic conductivity of municipal solid waste and analysis of pumping vertical well [D]. Hangzhou: Zhejiang University, 2009. (in Chinese))
    [13]
    CJJ 176—2012 生活垃圾卫生填埋场岩土工程技术规范[S]. 2012. (CJJ 176—2012 Technical code for geotechnical engineering of municipal solid waste sanitary landfills[S]. 2012. (in Chinese))
    [14]
    ROSQVIST H, DESTOUNI G. Solute transport through preferential pathways in municipal solid waste[J]. Journal of Contaminant Hydrology, 2000, 46(1): 39-60.
    [15]
    ZEKKOS D. Experimental evidence of anisotropy in municipal solid waste[C]// Coupled Phenomena in Environmental Geotechnics. Torino, 2013: 69-77.
    [16]
    SINGH K, KADAMBALA R, JAIN P, et al. Anisotropy estimation of compacted municipal solid waste using pressurized vertical well liquids injection[J]. Waste Management & Research, 2014, 32(6): 482-491.
    [17]
    CARMAN P C. Permeability of saturated sands, soils and clays[J]. The Journal of Agricultural Science, 1939, 29(2): 262-273.
    [18]
    TAVENAS F, JEAN P, LEBLOND P, et al. The permeability of natural soft clays Part II: Permeability characteristics[J]. Canadian Geotechnical Journal, 1983, 20(4): 645-660.
    [19]
    UGUCCIONI M, ZEISS C. Comparison of two approaches to modeling moisture movement through municipal solid waste[J]. Journal of Environmental Systems, 1997, 25(1): 41-63.
    [20]
    BENDZ D, SINGH V P, ROSQVIST H, et al. Kinematic wave model for water movement in municipal solid waste[J]. Water Resources Research, 1998, 34(11): 2963-2970.
    [21]
    OBERMANN I. Modellierung des Wasserhaushaltes von Deponien vorbehandelter Siedlungsabfälle[D]. Darmstadt: Technische Universität Darmstadt, 2004. (OBERMANN I. Modeling the waster balance of landfills containing pre-treated waste[D]. Darmstadt: Technical University of Darmstadt, 2004. (in German))
    [22]
    FELLNER J, BRUNNER P H. Modeling of leachate generation from MSW landfills by a 2-dimensional 2-domain approach[J]. Waste Management, 2010, 30(11): 2084-2095.
    [23]
    BEAVEN R P, POWRIE W, ZARDAVA K. Hydraulic properties of MSW[J]. Geotechnical Special Publication, 2008, 48: 1-43.
    [24]
    WOODMAN N D. Modelling of transport in highly heterogeneous porous media, with application to the flushing of waste[D]. London: University of London, 2008.
    [25]
    孔令荣, 黄宏伟, HICHER P Y, 等. 上海淤泥质黏土微结构特性及固结过程中的结构变化研究[J]. 岩土力学, 2008, 29(12): 3287-3292. (KONG Ling-long HUANG Hong-wei, HICHER P Y, et al. The microstructure property on Shanghai mucky clay and its structural evolution during one dimensional consolidationtes[J]. Rock and Soil Mechanics, 2008, 29(12): 3287-3292. (in Chinese))
    [26]
    DELAGE P, LEFEBVRE G. Study of the structure of a sensitive Champlain clay and of its evolution during consolidation[J]. Canadian Geotechnical Journal, 1984, 21(1): 21-35.
    [27]
    CONCHA D M C, WATSON G, RICHARDS D, et al. Exploring the use of micro-focus computed tomography for a better conceptual understanding of structure in landfilled waste in the context of post-closure management for landfills[J]. Sustainable Environment Research, 2011, 21(4): 259-268.
    [28]
    YANG Y, APLIN A C. Influence of lithology and compaction on the pore size distribution and modelled permeability of some mudstones from the Norwegian margin[J]. Marine and Petroleum Geology, 1998, 15(2): 163-175.
    [29]
    BEVEN K, GERMANN P. Macropores and water flow in soil[J]. Water Resources Research, 1982, 18(5): 1311-1325.
    [30]
    王文芳. 不同降解龄期下城市固体废弃物渗透性研究[D]. 杭州: 浙江大学, 2012. (WANG Wen-fang. Laboratory research on saturated hydraulic conductivity of municipal solid waste under different degradation age[D]. Hangzhou: Zhejiang University, 2012. (in Chinese))
    [31]
    MÜNNICH K, BAUER J, FRICKE K. Investigation on relationship between vertical and horizontal permeabilities of MBT wastes[C]// Tenth International Waste Management and Landfill Symposium. Sardinia, 2005.
    [32]
    LANDVA A O, PELKEY S G, VALSANGKAR A J. Coefficient of permeability of municipal refuse[C]// Proceedings of the 3rd International Congress on Environmental Geotechnics. Lisbon, 1998: 63-68.
    [33]
    HUDSON A P, BEAVEN R P, POWRIE W. Assessment of vertical and horizontal hydraulic conductivities of household waste in a large scale compression cell[C]// Proceedings of the 12 th Waste Management and Landfill Symposium. Sardinia, 2009: 641-642.
  • Cited by

    Periodical cited type(3)

    1. 朱艳. 邹城地区黏土体-结构面接触渗透下渗流侵蚀试验研究. 广东水利水电. 2024(08): 20-24 .
    2. 胡嘉英,邹光华,徐祚卉,陈学习,杨涛,师皓宇,周爱桃. 含瓦斯煤岩构造界面剪切-渗流耦合试验方法及教学设计实践. 实验技术与管理. 2024(09): 61-72 .
    3. 刘健,杨浩,崔晓琳. 围压作用下土-结构接触渗流特性. 山东大学学报(工学版). 2023(03): 60-68 .

    Other cited types(5)

Catalog

    Article views (422) PDF downloads (269) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return