• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
LUAN Lu-bao, DING Xuan-ming, LIU Han-long, ZHENG Chang-jie. Analytical solution of lateral dynamic response of a large diameter pipe pile considering influence of axial load[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1859-1868. DOI: 10.11779/CJGE201610015
Citation: LUAN Lu-bao, DING Xuan-ming, LIU Han-long, ZHENG Chang-jie. Analytical solution of lateral dynamic response of a large diameter pipe pile considering influence of axial load[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1859-1868. DOI: 10.11779/CJGE201610015

Analytical solution of lateral dynamic response of a large diameter pipe pile considering influence of axial load

More Information
  • Received Date: June 11, 2015
  • Published Date: October 24, 2016
  • The horizontal vibration model for a large diameter pipe pile subjected to axial load in viscoelastic soil is established. The potential functions are adopted to decouple the governing equations of the soil. Analytical solution of the impedance of the pipe pile is obtained based on the assumption of perfect contact between the pile and the soil. This analytical solution can be perfectly simplified to the horizontal vibration solution of pipe pile without axial load, which demonstrates the validity of the solution deduced in this study. Numerical examples are presented to analyze the influences of axial load, excitation frequencies, and pile lengths on the complex impedances, displacements and internal forces. The results show that the complex impedance resonates at the inherent frequency of the pile-soil system. The vertical loads cause the redistribution of the displacements and internal forces of the pipe pile. The maximum displacement, bending moment and shear stress are located at the upper part of the pile shaft when the vertical load is 0, however, they move to the pile bottom gradually with the increase of the vertical load. The horizontal displacement of the pipe pile varies with the frequency. The changes of rotation angle, bending moment and shear force are obvious at the lower part of the pile shaft. The influences of pile length on displacement and internal force at the middle and bottom parts of the pile are more significant than those in the other parts. The displacements located at the upper part of the pile shaft without inner soil are larger than those with inner soil.
  • [1]
    NOVAK M. Dynamic stiffness and damping of piles[J]. Canadian Geotechnical Journal, 1974, 11(4): 574-598.
    [2]
    NOVAK M, ABOUL-ELLA F. Impedance functions of piles in layered media[J]. Journal of the Engineering Mechanics Division, 1978, 104(3): 643-661.
    [3]
    NOVAK M, NOGAMI T. Soil‐pile interaction in horizontal vibration[J]. Earthquake Engineering & Structural Dynamics, 1977, 5(3): 263-281.
    [4]
    NOGAMI T, NOVAK M. Resistance of soil to a horizontally vibrating pile[J]. Earthquake Engineering & Structural Dynamics, 1977, 5(3): 249-261.
    [5]
    DOYLE P F, PAVLOVIC M N. Vibration of beams on partial elastic foundations[J]. Earthquake Engineering & Structural Dynamics, 1982, 10(5): 663-674.
    [6]
    EISENBERGER M, YANKELEVSKY D Z, ADIN M A. Vibrations of beams fully or partially supported on elastic foundations[J]. Earthquake Engineering & Structural Dynamics, 1985, 13(5): 651-660.
    [7]
    GAZETAS G, DOBRY R. Horizontal response of piles in layered soils[J]. Journal of Geotechnical Engineering, ASCE, 1984, 110(1): 20-40.
    [8]
    杨 军, 宋二祥, 陈肇元. 桩在饱和土中水平振动的辐射阻尼简化算法[J]. 岩土力学, 2002(2): 179-183. (YANG Jun, SONG Er-xiang, CHEN Zhao-yuan. Simple radiation damping model for horizontally vibrating pile in saturated soil[J]. Rock and Soil Mechanics, 2002(2): 179-183. (in Chinese))
    [9]
    尚守平, 余 俊, 王海东, 等. 饱和土中桩水平振动分析[J]. 岩土工程学报, 2007, 29(11): 1696-1702. (SHANG Shou-ping, YU Jun, WANG Hai-dong, et al. Horizontal vibration of piles in saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1696-1702. (in Chinese))
    [10]
    余 俊, 尚守平, 李 忠, 等. 饱和土中端承桩水平振动动力响应分析[J]. 岩土工程学报, 2009, 31(3): 408-415. (YU Jun, SHANG Shou-ping, LI Zhong, et al. Dynamical characteristics of an end bearing pile embedded in saturated soil under horizontal vibration[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 408-415. (in Chinese))
    [11]
    HALABE U B, JAIN S K. Lateral free vibration of a single pile with or without an axial load[J]. Journal of Sound and Vibration, 1996, 195(3): 531-544.
    [12]
    周绪红, 蒋建国, 邹银生. 黏弹性介质中考虑轴力作用时桩的动力分析[J]. 土木工程学报, 2005, 38(2): 87-91. (ZHOU Xu-hong, JIANG Jian-guo, ZOU Yin-sheng. Dynamic analysis of piles under axial loading and lateral dynamic force in visco-elastic media[J]. Chinese Civil Engineering Journal, 2005, 38(2): 87-91. (in Chinese))
    [13]
    CATAL H H. Free vibration of partially supported piles with the effects of bending moment, axial and shear force[J]. Engineering Structures, 2002, 24(12): 1615-1622.
    [14]
    CATAL H H. Free vibration of semi-rigid connected and partially embedded piles with the effects of the bending moment, axial and shear force[J]. Engineering Structures, 2006, 28(14): 1911-1918.
    [15]
    LU J F, ZHANG X, WAN J W, et al. The influence of a fixed axial top load on the dynamic response of a single pile[J]. Computers and Geotechnics, 2012, 39: 54-65.
    [16]
    LIU H L, CHU J, DENG A. Use of large-diameter, cast-in situ concrete pipe piles for embankment over soft clay[J]. Canadian Geotechnical Journal, 2009, 46(8): 915-927.
    [17]
    LIU H L, NG C W W, FEI K. Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: case study[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(12): 1483-1493.
    [18]
    XU X T, LIU H L, LEHANE B M. Pipe pile installation effects in soft clay[J]. Geotechnical Engineering, 2006, 159(4): 285-296.
    [19]
    DING X M, LIU H L, LIU J Y, et al. Wave propagation in a pipe pile for low-strain integrity testing[J]. Journal of Engineering Mechanics, ASCE, 2011, 117(9): 598-609.
    [20]
    ZHENG C, DING X, LI P, et al. Vertical impedance of an end‐bearing pile in viscoelastic soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 39(6): 676-684.
    [21]
    ZHENG C, LIU H, DING X, et al. Horizontal vibration of a large-diameter pipe pile in viscoelastic soil[J]. Mathematical Problems in Engineering, 2013(3): 1-13.
  • Related Articles

    [1]Influence of compaction and hydrophobic agent content on the breakthrough pressure of hydrophobic soil[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240364
    [2]LIU Feiyu, KONG Jianjie, YAO Jiamin. Effects of rock content and degree of compaction on interface shear characteristics of geogrid-soil-rock mixture[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 903-911. DOI: 10.11779/CJGE20220287
    [3]ZHAO Wen-he, YANG Xiu-juan, WANG Bao-zhong, FAN Heng-hui, MENG Min-qiang, ZHU Zhen. Laws of water migration and settlement at interface in loess filled areas under rainfalls[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1710-1720. DOI: 10.11779/CJGE202209016
    [4]WANG Lai-cai, HU Hai-jun, WANG Chen, KANG Shun-xiang. Measurement and prediction of water retention curve of remolded loess with different degrees of compaction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 204-208. DOI: 10.11779/CJGE2021S1037
    [5]WU Yang, HUANG Jin-sheng, CUI Jie, YOSHIMOTO Norimasa. Influences of particle shape and degree of compaction on shear response of clinker ash[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2220-2229. DOI: 10.11779/CJGE202112008
    [6]XU Jie, HU Hai-tao, ZHENG Zhi. Effects of compaction and water content on thermal conductivity of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 244-248. DOI: 10.11779/CJGE2020S1048
    [7]JIA Liang, ZHU Yan-peng, ZHU Jun-chuan. Influencing factors for shear strength of Malan and Lishi compacted loess in Lanzhou[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 120-124. DOI: 10.11779/CJGE2014S2020
    [8]ZHANG Yu-hui, ZHANG Xian-min, CHENG Guo-yong. Evaluation of compactness degree of interval soil in soil-stone mixtures by use of shear-wave velocity[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 909.
    [9]WANG Xie-qun, ZOU Wei-lie, LUO Yi-dao, WANG Jian-feng, DENG Wei-dong. SWCCs and influence of temperature on matrix suction under different compaction degrees[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 368.
    [10]Study on RIC construction method for tamping of backfill behind aboutment in express highway[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 702-705.
  • Cited by

    Periodical cited type(22)

    1. 王智超,彭柱,彭峰,闫实. 聚氨酯固化钙质砂物理力学特性. 长江科学院院报. 2024(01): 107-113 .
    2. 韩庆华,王永超,刘铭劼,李浩斌. 振动台试验饱和机制砂模型土动力特性研究. 土木工程学报. 2024(03): 110-122 .
    3. 王家全,和玉,祝梦柯,钱弘毅. 相对密实度和固结应力比对北部湾海砂动力特性影响的试验研究. 安全与环境工程. 2024(04): 20-28 .
    4. 王钰轲,李俊豪,邵景干,余翔. 不同影响因素下路用黄河泥沙动剪切模量和阻尼比试验及理论模型研究. 工程科学学报. 2023(03): 509-519 .
    5. 胡健,肖杨,肖鹏,王林,丁选明,仉文岗,刘汉龙. 基于机器学习预测微生物加固钙质砂统一动强度. 中国公路学报. 2023(02): 80-88 .
    6. 刘鑫,李飒,尹福顺,姚婷. 基于动态图像技术的南海钙质土颗粒形态特征研究. 岩土工程学报. 2023(03): 590-598 . 本站查看
    7. 邱筱童,尹训强,王桂萱. 考虑不同影响因素的珊瑚岛礁场地地震响应分析. 自然灾害学报. 2023(01): 131-138 .
    8. 尹福顺,李飒,刘鑫. 钙质粗粒料颗粒强度和压缩特性的试验研究. 岩土力学. 2023(04): 1120-1129+1152 .
    9. 李能,吴杨,周福霖,谭平. 岛礁吹填珊瑚砂不排水单调和循环剪切特性试验. 中国公路学报. 2023(08): 152-161 .
    10. 郭桢,蒲建,卢劲锴,黄雨. 南海西沙岛礁非饱和珊瑚砂共振柱-弯曲元试验研究. 工程地质学报. 2023(05): 1552-1562 .
    11. 吴杨,崔杰,李晨,温丽维,单振东,廖静容. 细粒含量对岛礁吹填珊瑚砂最大动剪切模量影响的试验研究. 岩石力学与工程学报. 2022(01): 205-216 .
    12. 赵云辉,孟凡超,郑志华. 相对密实度对结构性砂土动剪切模量和阻尼比影响的试验研究. 工程抗震与加固改造. 2022(01): 152-159 .
    13. 吴琪,杨铮涛,刘抗,陈国兴. 细粒含量对饱和珊瑚砂动力变形特性影响试验研究. 岩土工程学报. 2022(08): 1386-1396 . 本站查看
    14. 陈龙珠,顾晓强. 共振柱试验确定土动剪切模量和阻尼比的理论辨析. 地基处理. 2022(05): 445-450 .
    15. 王伟,李犇,罗佳乐,胡俊,姜屏,李娜. 动荷载作用历史对水泥固化钙质砂三轴力学特性影响. 自然灾害学报. 2022(05): 158-167 .
    16. 周正龙,丁芷萱,刘杰,赵凯,梁珂,鹿庆蕊. 南海海域饱和粉土动剪切模量和阻尼比试验研究. 土木工程学报. 2022(S1): 227-233 .
    17. 宋前进,程磊,贺为民. 孔隙比对土体动力特性参数的影响——以豫东平原粉土为例. 科学技术与工程. 2021(07): 2830-2835 .
    18. 高盟,彭晓东,陈青生. 南海非饱和钙质砂动力特性三轴试验研究. 北京工业大学学报. 2021(06): 625-635 .
    19. ZHANG Yan-ling,DING Xuan-ming,CHEN Zhi-xiong,WU Qi,WANG Cheng-long. Seismic responses of slopes with different angles in coral sand. Journal of Mountain Science. 2021(09): 2475-2485 .
    20. 郭聚坤,王瑞,尹斌,卞贵建,魏道凯. 钢-钙质砂界面循环剪切特性试验研究. 建筑结构. 2021(S2): 1613-1617 .
    21. 宋前进,程磊,贺为民. 豫东平原粉质黏土动剪切模量与阻尼比试验研究. 地震工程学报. 2020(04): 1013-1018 .
    22. 信鹏飞,李飒,吴文娟. 冲击荷载作用下钙质砂破碎与变形特性研究. 水力发电学报. 2019(12): 102-111 .

    Other cited types(16)

Catalog

    Article views (432) PDF downloads (333) Cited by(38)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return