• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Zhi-guo, ZHAO Qi-hua, BAI Qiao-mu, WANG Wei-dong. Excavation influences induced by shallow shield tunnel in saturated soil considering drainage at ground-liner interface[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1595-1605. DOI: 10.11779/CJGE201609006
Citation: ZHANG Zhi-guo, ZHAO Qi-hua, BAI Qiao-mu, WANG Wei-dong. Excavation influences induced by shallow shield tunnel in saturated soil considering drainage at ground-liner interface[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1595-1605. DOI: 10.11779/CJGE201609006

Excavation influences induced by shallow shield tunnel in saturated soil considering drainage at ground-liner interface

More Information
  • Received Date: July 08, 2015
  • Published Date: September 24, 2016
  • The excavation impact analysis of geo-environmental effects caused by shield tunnel in saturated soil has been a hot issue in the researches of tunnel and underground structure engineering. However, the current researches give little investigations on the impacts of saturated soil as well as the interface drainage process between tunnel liner and surrounding soils. Particularly the long-term deformation influences and the liner stress are not investigated. Considering the two conditions of no drainage or full drainage at the ground-liner interface, a method for soil displacements and liner stresses affected by tunneling is proposed based on the oval deformation mode. It is observed that the oval deformation mode yields significant impacts on both the short-term and long-term ground displacements. The soil deformation curves are in good agreement with the measured values. It can be concluded that when calculating the stress of liner, the axial force and bending moment of liner are strictly symmetrical to axis 90º/270 º or tunnel vertical axes. The type of axial force is somewhat “8”- shaped circumference, with the above circle obviously larger than the below one. The type of bending movement is also “8”-shaped, with the below circle a little larger than the above one. The soil and interface drainage conditions significantly affect the value of internal force of liner. The internal force of liner under long-term and full drainage conditions in saturated soil, which is larger than that under the long-term condition without drainage, is quite different compared to that under the short-term condition without interface drainage. The analysis results may provide a theoretical basis for correct prediction of the shallow shield excavation deformation in saturated soils.
  • [1]
    PECK R B. Deep excavations and tunneling in soft ground[C]// Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City, 1969: 225-290.
    [2]
    齐 涛, 张庆贺, 胡向东, 等. 一种盾构掘进引起地表沉降的实用预测方法[J]. 岩土力学, 2010, 31(4): 1247-1252. (QI Tao, ZHANG Qing-he, HU Xiang-dong, et al. A practical approach for predicting surface settlements induced by shield tunneling[J]. Rock and Soil Mechanics, 2010, 31(4): 1247-1252. (in Chinese))
    [3]
    于 宁, 朱合华. 盾构隧道施工地表变形分析与三维有限元模拟[J]. 岩土力学, 2004, 25(8): 1330-1334. (YU Ning, ZHU He-hua. Analysis of earth deformation caused by shield tunnel construction and 3D-FEM simulation[J]. Rock and Soil Mechanics, 2004, 25(8): 1330-1334. (in Chinese))
    [4]
    楼晓明, 郑俊杰, 章荣军. 隧道施工引起的地表变形数值模拟[J]. 铁道工程学报, 2007, 108(9): 62-66. (LOU Xiao-ming ZHENG Jun-jie, ZHANG Rong-jun. Simulation of numerical values of surface deformation caused by tunnel construction[J]. Journal of Railway Engineering Society, 2007, 108(9): 62-66. (in Chinese))
    [5]
    孔祥兴, 夏才初, 仇玉良, 等. 平行小净距盾构与CRD法黄土地铁隧道施工力学研究[J]. 岩土力学, 2011, 32(2): 516-524. (KONG Xiang-xing, XIA Cai-chu, QIU Yu-liang, et al. Study of construction mechanical behavior of parallel-small spacing metro tunnels excavated by shield method and cross diaphragm (CRD) method in loess region[J]. Rock and Soil Mechanics, 2011, 32(2): 516-524. (in Chinese))
    [6]
    郑 刚, 戴 轩. 灾害环境下隧道不同部位漏水对于周围土体及平行隧道的影响研究[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3196-3207. (ZHENG Gang, DAI Xuan. Influence of different leakage positions of tunnel on surrounding soils and parallel tunnel under disaster environment[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3196-3207. (in Chinese))
    [7]
    VERRUIJT A. Complex variable solution for a deforming circular tunnel in an elastic half plane[J]. Géotechnique, 1997, 21(4): 77-89.
    [8]
    VERRUIJT A. Deformations of an elastic half plane with a circular cavity[J]. International Journal of Solids and Structures, 1998, 35(21): 2795-2804.
    [9]
    王立忠, 吕学金. 复变函数分析盾构隧道施工引起的地基变形[J]. 岩土工程学报, 2007, 29(3): 319-327. (WANG Li-zhong, LÜ Xue-jin. A complex variable solution for different kinds of oval deformation around circular tunnel in an elastic half plane[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 319-327. (in Chinese))
    [10]
    韩凯航, 张成平, 王梦恕. 浅埋隧道围岩应力及位移的显式解析解[J]. 岩土工程学报, 2012, 36(12): 2253-2259. (HAN Kai-hang, ZHANG Cheng-ping, WANG Meng-shu. Explicit analytical solutions for stress and displacement of surrounding rock in shallow tunnels[J]. Chinese Journal of Geotechnical Engineering, 2012, 36(12): 2253-2259. (in Chinese))
    [11]
    魏 纲, 徐日庆. 软土隧道盾构法施工引起的纵向地面变形预测[J]. 岩土工程学报, 2005, 27(9): 1077-1081. (WEI Gang, XU Ri-qing. Prediction of longitudinal ground deformation due to tunnel construction with shield in soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1077-1081. (in Chinese))
    [12]
    唐晓武, 朱 季, 刘 维, 等. 盾构施工过程中的土体变形研究[J]. 岩石力学与工程学报, 2010, 29(2): 206-211. (TANG Xiao-wu, ZHU Ji, LIU Wei, et al. Research on soil deformation during shield construction process[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 206-211. (in Chinese))
    [13]
    SAGASETA C. Analysis of undrained soil deformation due to ground loss[J]. Géotechnique, 1988, 38(4): 301-320.
    [14]
    VERRUIJT A, BOOKER J R. Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Géotechnique, 1996, 46(4): 753-756.
    [15]
    LOGANATHAN N, POULOS H G. Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 846-856.
    [16]
    林存刚, 夏唐代, 梁荣柱, 等. 盾构掘进地面沉降虚拟镜像算法[J]. 岩土工程学报, 2014, 36(8): 1438-1446. (LIN Cun-gang, XIA Tang-dai, LIANG Rong-zhu, et al. Estimation of shield tunnelling-induced ground surface settlements by virtual image technique[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1438-1446. (in Chinese))
    [17]
    BOBET A. Analytical solutions for shallow tunnels in saturated ground[J]. Journal of Engineering Mechanics, 2001, 127(12): 1258-1266.
    [18]
    CHOU W I, BOBET A. Prediction of ground deformations in shallow tunnels in clay[J]. Tunnelling and Underground Space Technology, 2002, 17(l): 3-19.
    [19]
    PARK K H. Elastic Solution for tunneling-induced ground movements in clays[J]. International Journal of Geomechanics, 2004, 4(4): 310-318.
    [20]
    PARK K H. Analytical solution for tunnelling-induced ground movement in clays[J]. Tunnelling and Underground Space Technology, 2005, 20(3): 249-261.
    [21]
    YANG J S, LIU B C, WANG M C. Modeling of tunneling-induced ground surface movements using stochastic medium theory[J]. Tunnelling and Underground Space Technology, 2004, 19(2): 113-123.
    [22]
    YANG X L, WANG J M. Ground movement prediction for tunnels using simplified procedure[J]. Tunnelling and Underground Space Technology, 2011, 26(3): 462-471.
    [23]
    韩 煊, 李 宁. 隧道施工引起地层位移预测模型的对比分析研究[J]. 岩石力学与工程学报, 2007, 29(3): 347-352. (HAN Xuan, LI Ning. Comparative analysis of strata prediction models for ground movement induced by tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 29(3): 347-352. (in Chinese))
    [24]
    TIMOSHENKO P, GOODIER J N. Theory of elasticity[M]. New York: Mc Graw-Hill, 1970.
    [25]
    GONZALEZ C, SAGASETA C. Patterns of soil deformations around tunnels- application to the extension of Madrid Metro[J]. Computers and Geotechnics, 2001, 28(6): 445-468.
    [26]
    FLÜEGGE W. Stresses in shells[M]. New York: Springer- Verlag, 1973.
    [27]
    BOUVARD M, PINTO N. Ame´nagement Capivari- Cachoeira: E´tude du puits en charge[J]. La Houille Blanche(Paris), 1969, 7: 747-760.
    [28]
    Fernández, Gabriel, Alvarez, Tirso A. Seepage-induced effective stresses and water pressures around pressure tunnels[J]. Journal of Geotechnical Engineering, 2014, 120(1): 108-128.
    [29]
    SCHLEISS A. Design criteria applied for the lower pressure tunnel of the North Fork Stanislaus River Hydroelectric project in California[J]. Rock Mechanics and Rock Engineering, 1988, 21(3): 161-181.
    [30]
    HARR M E. Groundwater and seepage[M]. New York: McGraw-Hill, 1962.
    [31]
    LEE K M, ROWE R K, LO K Y. Subsidence owing to tunnelling. I. Estimating the gap parameter[J]. Canadian Geotechnical Journal, 1992, 29(6): 929-940.
  • Cited by

    Periodical cited type(11)

    1. 蔺云宏,郝云龙,李明宇,田帅,常瑞成,刘新新. 基坑开挖引起下卧地铁盾构隧道变形的统计与预测方法研究. 河南科学. 2025(03): 337-346 .
    2. 张毅. 软弱地层下的基坑支护方案比选. 山西建筑. 2024(17): 97-100 .
    3. 王伟,邓松峰. 深厚软土区邻近地铁深基坑工程关键技术研究. 江苏建筑. 2024(05): 120-126 .
    4. 刘朝阳,蒋凯,梁禹. 基于Kerr地基模型的覆土荷载引起既有装配式地铁车站沉降分析. 现代隧道技术. 2024(05): 71-78 .
    5. 贺旭. 软弱地层基坑开挖支护方案比选研究. 铁道建筑技术. 2023(05): 100-104+125 .
    6. 张继新. 浅埋扩挖隧道变形处理技术分析. 交通世界. 2023(15): 138-140 .
    7. 邓彬,张磊,郑鹏鹏,陈保国,邹顺清. 深基坑开挖与内支撑调节对邻近沉井影响规律试验研究. 建筑科学与工程学报. 2023(05): 174-182 .
    8. 马少俊,王乔坎,苏凤阳,徐建章,郑伟,陈思源. 邻地铁盾构隧道超长基坑支护技术——以杭州大会展中心基坑工程为例. 建筑科学. 2022(05): 179-186 .
    9. 王丽萍. 水平间距对涉水隧道土体变形影响的模拟分析. 黑龙江水利科技. 2022(08): 74-76+108 .
    10. 冯文刚. 涉水隧道开挖对土体沉降影响分析. 黑龙江水利科技. 2022(08): 89-92 .
    11. 祖华. 城市地铁隧道开挖及变形控制的数值模拟研究. 山西建筑. 2022(21): 135-137 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return