• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Shun-ji, LI Jun, LIU Gong-hui. Mechanism of cryogenic rock failure in gas drilling[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1466-1472. DOI: 10.11779/CJGE201608014
Citation: YANG Shun-ji, LI Jun, LIU Gong-hui. Mechanism of cryogenic rock failure in gas drilling[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1466-1472. DOI: 10.11779/CJGE201608014

Mechanism of cryogenic rock failure in gas drilling

More Information
  • Received Date: July 12, 2015
  • Published Date: August 24, 2016
  • The factors contributing to high penetration rate of gas drilling are complex. The isentropic flow is generated when gas passes through bit nozzle during gas drilling. This phenomenon will lead to cryogenic effects, and then the resulted thermal shock stress at bottom hole rock will reduce the rock strength, contributing to the role of the rock failure. First, a model for the temperature distribution of bottom hole rock under asymmetric cooling is established. The three-dimensional dynamic thermal shock stress distribution model is established based on the temperature field. Then, the change of the rock cohesion is analyzed by using the Mohr-Coulomb criterion. The results demonstrate that as the temperature decreases, the strength of rock is greatly reduced, resulting in increased ROP. Finally the liquid nitrogen cooling tests and real-time measurements of acoustic waves are conducted to verify the above theory. The first wave amplitude has a dramatic delay, which illustrates that the cooling has an important impact on the internal structure of rock. The mechanism of rock failure under dynamic low temperature in gas drilling is clearly depicted.
  • [1]
    ANGEL R. Volume requirements for air or gas drilling[J]. Transaction of American Istitute of Mining, Metallurgical, and Petroleum Engineers, 1957, 210: 325-330.
    [2]
    CHEN G, CHEN X. The application of air and air/foam drilling technology in tabnak gas field, southern iran[C]// Social of Petroleum Engineer 101560, 2006.
    [3]
    GAS RESEARCH INSTITUTE. Underbalanced Drilling manual[M]. GRI Reference, 1997.
    [4]
    GUO B, GHALAMBOR A, XU C. A systematic approach to predicting liquid loading in gas wells[J]. SPE Production & Facilities Journal, 2006, 21: 81-88.
    [5]
    GUO B, MISKA S, LEE R. Volume requirements for directional air drilling[C]// Social of Petroleum Engineering 27510. 1994.
    [6]
    ZHU H, MENG Y. Influence of relevant parameters on hole cleaning and pipe string erosion in air drilling[C]// Social of Petroleum Engineering 126515. 2010.
    [7]
    LI J, LIU G H, GUO B Y. Pilot test shows promising technology for gas drilling[J]. Journal Petroleum Technology, 2012, 7: 32-37.
    [8]
    YANG S J, LIU G H, LI J. The characteristics of recycling gas drilling technology[J]. Petroleum Science, 2012, 1: 59-65.
    [9]
    YANG S J, LIU G H, LI J. Distribution of the sizes of rock cuttings in gas drilling at various depths[J]. Computer Modeling in Engineering & Science, 2012, 89(2): 79-96.
    [10]
    LI J, YANG S J, LIU G H. Cutting breakage and transportation mechanism of air drilling[J]. International Journal of Oil, Gas and Coal Technology, 2013, 6(3): 259-270.
    [11]
    LI J, YANG S J, LIU G H. Gas flow control method of recycling gas drilling technology[J]. International Journal of Oil, Gas and Coal Technology, 2013, 6(6): 645-657.
    [12]
    YANG S J, LIU G H, LI J. Thermal stress on bottom hole rock of gas drilling[J]. International Journal of Oil, Gas and Coal Technology, 2012, 5(4): 385-398.
    [13]
    MOORE P L. Five factor that affect drilling rate[J]. Oil and Gas Journal, 1958, 56(40): 141-162.
    [14]
    BOURGOYNE A T, MILLHEIM K K, CHENEVERT M E, et al. Applied drilling engineering[C]// Social of Petroleum Engineer 31656. 1985.
    [15]
    MURRAY A S, CUNNINGHAM R A. Effect of mud column pressure on drilling rate. transaction of american istitute of mining, metallurgical, and petroleum engineer[J]. 1955, 205: 196-204.
    [16]
    CUNNINGHAM R A, FENINK J G. Laboratory study of effect of overburden, formation, and mud column pressure on drilling rate of permeable formations[J]. Transaction of American Istitute of Mining, Metallurgical, and Petroleum Engineer, 1959, 216: 9-17.
    [17]
    BLACK A D, GREEN S J. Laboratory simulation of deep well drilling[R]. Petroleum Engineer, 1978.
    [18]
    SHEFFIELD J S, SITZMAN J J. Air drilling practices in the midcontinent and rocky mountain areas[C]// Social of Pereoleum Engineer 13490. 1985.
    [19]
    仉鸿云, 高德利, 郭伯云. 气体钻井井底岩石热应力分析[J]. 中国石油大学学报(自然科学), 2013, 34(1): 70-74. (ZHANG Hong-yun, GAO De-li, GUO Bo-yun. Downhole rock thermal stress analysis in gas drilling[J]. Journal of China University of Petroleum (Science edition), 2013, 34(1): 70-74. (in Chinese))
    [20]
    陶文铨. 传热学[M]. 西安: 西北工业大学出版社, 2006, 12. (TAO Wen-shuan. Heat transfer theory[M]. Xi'an: Northwestern Polytechnic University Press, 2006. (in Chinese))
    [21]
    王龙甫. 弹性力学[M]. 2版. 北京: 科学出版社, 1979. (WANG Long-fu. Elastic mechanics[M]. 2nd ed. Beijing: Science Press, 1979. (in Chinese))
    [22]
    陈 勉, 金 衍, 张广清. 石油工程岩石力学[M]. 北京: 科学出版社, 2008. (CHEN Mian, JIN Yan, ZHANG Guang-qing. Rock mechanics of petroleum engineering[M]. Beijing: Science Press, 2008. (in Chinese))
  • Related Articles

    [1]CUI Chunyi, XU Minze, XU Chengshun, ZHAO Jingtong, LIU Hailong, MENG Kun. Seismic fragility analysis of subway station structures considering statistical uncertainty of seismic demands[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 453-462. DOI: 10.11779/CJGE20230980
    [2]ZHANG Chenlong, ZHANG Dongming, HUANG Zhongkai, HUANG Hongwei. Resilience assessment method for subway stations considering uncertainty of seismic intensity[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 164-172. DOI: 10.11779/CJGE20231153
    [3]LI Jinqiang, ZHONG Zilan, SHEN Jiaxu, ZHANG Bu, ZHANG Yabo, DU Xiuli. Longitudinal seismic fragility analysis of utility tunnel structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1622-1631. DOI: 10.11779/CJGE20230397
    [4]DAI Xuan, MA Yunxiang, WEI Shaowei, WEI Peiyong, HUO Haifeng, CAI Degou, LI Zhao. Seismic performance analysis of frame beams-reinforced slope under different earthquake intensities[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 147-152. DOI: 10.11779/CJGE2023S20019
    [5]QIU Dapeng, CHEN Jianyun, WANG Wenming, CAO Xiangyu. Fragility analysis of underground large-scale frame structures considering seismic effects of vertical earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2537-2546. DOI: 10.11779/CJGE20221053
    [6]ZHEN Libin, SHI Yuebo, ZHONG Zilan, DU Xiuli, LUO Wenlin. Efficient seismic fragility of underground structures using endurance time analysis method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 777-784. DOI: 10.11779/CJGE20220188
    [7]MENG Chang, TANG Liang. Seismic fragility analysis of pile-supported wharf in nearshore liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2274-2282. DOI: 10.11779/CJGE202112014
    [8]ZHONG Zi-lan, SHEN Yi-yao, HAO Ya-ru, LI Li-yun, DU Xiu-li. Seismic fragility analysis of two-story and three-span metro station structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 916-924. DOI: 10.11779/CJGE202005014
    [9]JIN Cong-cong, CHI Shi-chun, NIE Zhang-bo. Seismic safety analysis of high earth-rockfill dams based on seismic deformational fragility[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 334-343. DOI: 10.11779/CJGE202002015
    [10]ZHU Hong-wei, YAO Ling-kan, LAI Jun. Seismic vulnerability assessment of gravity retaining walls based on performance[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 150-157. DOI: 10.11779/CJGE202001017

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return