• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Zhi-hong, SHI Yu-min, ZHU Min. Coupled hydro-mechanical-chemical model for clay liner[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1283-1290. DOI: 10.11779/CJGE201607016
Citation: ZHANG Zhi-hong, SHI Yu-min, ZHU Min. Coupled hydro-mechanical-chemical model for clay liner[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1283-1290. DOI: 10.11779/CJGE201607016

Coupled hydro-mechanical-chemical model for clay liner

More Information
  • Received Date: July 12, 2015
  • Published Date: July 24, 2016
  • The interconnection among mechanical behaviors of soil, pore water flow and contaminant transport is always involved in the fields of environmental geotechnical engineering and controlling of pollution. The related problems include the construction and maintenance of urban solid waste yards, and the protection of soil and groundwater from pollution. The consolidation deformation of soil is divided into two parts: mechanical consolidation deformation caused by mechanical loading and chemo-osmotic consolidation deformation caused by chemical loading. Then, based on the generalized Darcy’s law and considering dynamic variation of soil physical and transport properties, the coupled hydro-mechanical-chemical model for clay liner is established through theoretical deduction. The remarkable characteristic of the model is that it achieves a full coupling of the consolidation deformation of soil, pore fluid flow and contaminant transport processes. Furthermore, the parameters of the coupled model can also reflect the impacts of coupling effects. The finite element software COMSOL Mutiphysics is adopted to work out the solution of the proposed coupled model and verify its correctness. The numerical results illustrate that the established model can describe the coupled hydro-mechanical-chemical process through inquiring into mechanism., Moreover, the results agree well with those of Peters and Smith. The proposed model can accurately reveal the spatial and temporal distribution of the excess pore water pressure, contaminant concentrations and evolution consolidation deformation of soil.
  • [1]
    陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1-46. (CHEN Yun-min. A fundamental theory of environmental geotechnics and its application[J]. Journal of Geotechnical Engineering, 2014, 36(1): 1-46. (in Chinese))
    [2]
    ALSHAWABKEH A N, RAHBAR N, SHEAHAN T C, et al. Volume change effects on solute transport in clay under consolidation[C]// Advances in Geotechnical Engineering with Emphasis on Dams, Highway Materials, and Soil Improvement. Geo Jordan: Geotechnical Practice Publication, 2004: 105-115.
    [3]
    ZHANG Z H, XU Z G, DU X L, et al. Impact of consolidation pressure on contaminant migration in clay liner[J]. Water Science and Engineering, 2013, 6(3): 340-353.
    [4]
    黄 璐, 赵成刚, 张雪东, 等. 输运性质受固结过程影响的污染物输运模型[J]. 岩土工程学报, 2010, 32(3): 420-427. (HUANG Lu, ZHAO Cheng-gang, ZHANG Xue-dong, et al. Contaminant migration model with consolidation dependent transport coefficients[J]. Journal of Geotechnical Engineering, 2010, 32(3): 420-427. (in Chinese))
    [5]
    MITCHELL J K, GREENBERG J A, WITHERSPOON P A. Chemico-osmotic effects in fine-grained soils[J]. Journal of the Soil Mechanics and Foundations Division, 1973, 99(4): 307-322.
    [6]
    MARINE I W, FRITZ S J. Osmotic model to explain anomalous hydraulic heads[J]. Water Resources Research, 1981, 17(1): 73-82.
    [7]
    .FRITZ S J. Ideality of clay membranes in osmotic processes: a review[J]. Clays and Clay Minerals, 1986, 34(2): 214-223.
    [8]
    KACZMAREK M, HUECKEL T. Chemo-mechanical consolidation of clays: analytical solutions for a linearized one-dimensional problem[J]. Transport in Porous Media, 1998, 32(1): 49-74.
    [9]
    KACZMAREK M. Chemically induced deformation of a porous layer coupled with advective-dispersive transport. Analytical solutions[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2001, 25(8): 757-770.
    [10]
    PETERS G P, SMITH D W. The influence of advective transport on coupled chemical and mechanical consolidation of clays[J]. Mechanics of Materials, 2004, 36(5): 467-486.
    [11]
    LI Y C, CLEALL P J, THOMAS H R. Multi-dimensional chemo-osmotic consolidation of clays[J]. Computers and Geotechnics, 2011, 38(4): 423-429.
    [12]
    WITTEVEEN P, FERRARI A, LALOUI L. An experimental and constitutive investigation on the chemo-mechanical behavior of a clay[J]. Géotechnique, 2013, 63(3): 244-255.
    [13]
    兰吉武. 填埋场渗滤液产生, 运移及水位雍高机理和控制[D]. 杭州: 浙江大学, 2012. (LAN Ji-wu. Mechanism of leachate generation, transport and mound in MSW landfills and control of leachate level[D]. Hangzhou: Zhejiang University, 2012. (in Chinese))
    [14]
    林 銮, 杨庆生. 化学-力学耦合理论与数值方法[J]. 固体力学学报, 2008, 29(1): 7-12 (LIN Luan, YANG Qing-sheng. The basis equations of chemo-mechanical coupling and corresponding numerical analysis[J]. Chinese Journal of Solid Mechanics, 2008, 29(1): 7-12. (in Chinese))
    [15]
    BIOT M A. Theory of elasticity and consolidation for a porous anisotropic solid[J]. Journal of Applied Physics, 1955, 26(2): 182-191.
    [16]
    NOORISHED J, TSANG C F, WITHERSPOON P A. Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks: numerical approach[J]. Journal of Geophyical Research, 1984, 89(B12): 10365-10373.
    [17]
    HART R D, ST JOHN C M. Formulation of a fully-coupled thermal-mechanical-fluid flow model for non-linear geologic systems[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1986, 23(3): 213-224.
    [18]
    王洪涛. 多孔介质污染物迁移动力学[M]. 北京: 高等教育, 2008. (WANG Hong-tao. Dynamics of fluid flow and contaminant transport in porous media[M]. Beijing: High Education Press, 2008. (in Chinese))
    [19]
    刘建国, 王洪涛, 聂永丰. 多孔介质中溶质有效扩散系数预测的分形模型[J]. 水科学进展, 2004, 15(4): 458-462. (LIU Jian-guo, WANG Hong-tao, NIE Yong-feng. Fractal model for predicting effective diffusion coefficient of solute in porous media. Advances in Water Science, 2004, 15(4): 458-462. (in Chinese))
  • Cited by

    Periodical cited type(25)

    1. 张志哺. 干湿-冻融循环下公路切坡玄武岩力学特性及损伤机制研究. 公路. 2025(03): 41-49 .
    2. 黄彦华,李明旭,武世岩,杨超. 基于连续-离散耦合方法的边坡稳定性模拟研究. 中南大学学报(自然科学版). 2025(04): 1502-1513 .
    3. 张科,李娜. 干湿循环作用下岩桥破裂演化及前兆异常定量识别研究. 工程地质学报. 2024(01): 64-73 .
    4. 刘帅,杨更社,潘振兴. 冻融环境下“三段式”岩质边坡锁固段损伤破坏及灾变机制研究. 岩石力学与工程学报. 2024(11): 2781-2795 .
    5. 黎俊华. 基于极限平衡法的边坡稳定性分析. 采矿技术. 2023(01): 39-44 .
    6. 王建明,崔新男,陈忠辉,陈冲. 露天矿含后缘裂隙岩质边坡岩体卸荷断裂机理与稳定性研究. 岩土工程学报. 2023(02): 345-353 . 本站查看
    7. 郭朋瑜,闫兴田,吉锋,易林立. 四川茂县新磨村滑坡启动机制物理模拟试验研究. 工程地质学报. 2023(01): 154-164 .
    8. 林之岳,黎俊华,王道林. 基于爆破振速演变规律的采场安全分析. 黄金. 2023(03): 5-11 .
    9. 冷先伦,王川,盛谦,宋文军,陈健,张占荣,陈菲. 基于透明相似模型试验的主控裂隙边坡变形破坏演化机制研究. 岩土力学. 2023(05): 1283-1294+1308 .
    10. 冉孟坤,韦港荣,熊春发,卢超波,秦梓航. 广西某高速公路基于切线角理论的隧道变形监测预警应用研究. 四川地质学报. 2023(02): 302-306+312 .
    11. 刘先林,范杰,朱觉文,李明智,朱星. 单轴压缩下岩桥脆性断裂的临界慢化特征. 水利水电技术(中英文). 2022(03): 166-175 .
    12. 朱星,唐垚. 锁固段边坡模型破坏前兆特征. 地球科学. 2022(06): 1957-1968 .
    13. 杨泓全,范杰,黄成年,刘先林,朱星. 中部锁固岩桥脆性断裂特征试验研究. 科学技术与工程. 2022(15): 6255-6263 .
    14. 杨奎斌,朱彦鹏. 考虑后缘裂缝影响的均质土坡滑动面形式及搜索研究. 应用基础与工程科学学报. 2022(05): 1216-1227 .
    15. 王闯,董金玉,刘汉东,黄志全,赵亚文,杨兴隆. 三段式锁固型岩质边坡动力响应特性及破坏机制振动台模型试验研究. 地球科学. 2022(12): 4428-4441 .
    16. 郑强强,徐颖,胡浩,钱佳威,宗琦,谢平. 单轴荷载作用下砂岩的破裂与速度结构层析成像. 岩土工程学报. 2021(06): 1069-1077 . 本站查看
    17. 陈永峰,张海东,赵广臣. 不同加载速率下端部节理岩桥变形破坏及裂隙扩展试验研究. 长江科学院院报. 2021(07): 66-72 .
    18. 张海东,陈永峰,赵广臣,张清华. 单轴压缩下预制端部节理岩桥变形破坏及裂隙扩展机制研究. 煤矿安全. 2021(09): 78-84 .
    19. 范杰,朱星,霍冬冬,胡桔维,刘俊峰. 基于数字图像相关和声发射的岩质锁固段破坏试验研究. 科学技术与工程. 2021(36): 15581-15590 .
    20. 李巧刚,张树东,吴斌. 矿区大型滑坡体力学机理及地质演化模式研究. 煤炭科学技术. 2020(03): 214-220 .
    21. 乔趁,李长洪,王宇,颜丙乾. 冻融循环作用下中部锁固岩桥破坏试验研究. 岩石力学与工程学报. 2020(06): 1094-1103 .
    22. 王建明,陈忠辉,周子涵,陈帅,孙小欢. 不同卸荷速率下节理岩桥变形破坏及裂隙扩展演化试验研究. 矿业科学学报. 2020(04): 382-392 .
    23. 袁新华. 单轴压缩下中部锁固岩桥变形破坏模式及演化机制研究. 中国安全生产科学技术. 2020(09): 116-121 .
    24. 李冬冬,刘汉东. 风脉寺滑坡前缘阻滑体不同产状稳定性研究. 华北水利水电大学学报(自然科学版). 2018(06): 8-12 .
    25. 姜彤,雷家华. 基于图像相关分析的锁固型滑坡模型试验方法. 华北水利水电大学学报(自然科学版). 2018(06): 41-45 .

    Other cited types(32)

Catalog

    Article views PDF downloads Cited by(57)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return