• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Chun-hui, ZHENG Xiao-ming. Strain softening and permeability evolution model of loaded rock and experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1125-1132. DOI: 10.11779/CJGE201606020
Citation: ZHANG Chun-hui, ZHENG Xiao-ming. Strain softening and permeability evolution model of loaded rock and experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1125-1132. DOI: 10.11779/CJGE201606020

Strain softening and permeability evolution model of loaded rock and experimental verification

More Information
  • Received Date: April 16, 2015
  • Published Date: June 24, 2016
  • To predict the strain softening behaviors and permeability evolution of the loaded rock, according to the tri-axial compression experimental results of Gebdykes dolomite, the effects of the confining pressure on the elastic modulus, failure strain, peak strength, strength degradation process, residual strength and dilatancy are analyzed. The whole deformation process of loaded rock is divided into three stages. The strength degradation index, brittle modulus coefficient and dilatant index are employed to improve the SS model (strain softening model) in FLAC, and a new strain softening model with the effects of confining pressure is proposed. According to the test data analysis of the permeability VS volumetric strain obtained including the coal of Huainan Panyi mine, tuff, sandstone of Balikun mine, mudstone of Anjialing, a permeability evolution model based on the enhanced permeability of volumetric strain is established. Based on the improved SS model, the strain softening and permeability evolution model of loaded rock is set up. The processes of the tri-axial compression, permeability evolution and dilatancy of Anjialing mudstones and Gebdykes dolomite are numerically modeled using the proposed model. The results show that (1) The permeability evolution model of the enhanced permeability of volumetric strain can better describe the relationship between the permeability and the volumetric strain. (2) The proposed model can better numerically model the effects of confining pressure on the residual strength, strength degradation process, dilatancy and permeability evolution of loaded rock.
  • [1]
    BÉSUELLE P, DESRUES J, RAYNAUD S. Experimental characterization of the localisation phenomenon inside a Vosges sandstone in a triaxial cell[J]. Int J Rock Mech Min Sci 2000, 37: 1223-37.
    [2]
    张 帆, 盛 谦, 朱泽奇, 等. 三峡花岗岩峰后力学特性及应变软化模型研究[J]. 岩石力学与工程学报, 2008, 27(增刊1): 2651-2655. (ZHANG Fan, SHENG Qian, ZHU Ze-qi, et al. Study of post-peak mechanical behavior and strain-softening model of Three Gorges granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S1): 2651-2655. (in Chinese))
    [3]
    陆银龙, 王连国, 杨 峰, 等. 软弱煤岩峰后应变软化力学特性研究[J]. 岩石力学与工程学报, 2010, 29(3): 640-648. (LU Yin-long, WANG Lian-guo, YANG Feng, et al. Post-peak strain softening mechanical properties of weak rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 640-648. (in Chinese))
    [4]
    MISHRA B, NIE D. Experimental investigation of the effect of change in control modes on the post-failure behavior of coal and coal measures rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 60(12): 363-369.
    [5]
    张春会, 赵全胜. 饱水度对砂岩强度和模量影响的三轴试验[J]. 岩土力学, 2014, 35(4): 951-958. (ZHANG Chun-hui, ZHAO Quan-sheng. Triaxial tests of effects of varied saturations on strength and modulus for sandstone[J]. Rock and Soil Mechanics, 2014, 35(4): 951-958. (in Chinese))
    [6]
    杨圣奇, 苏承东, 徐卫亚.大理岩常规三轴压缩下强度和变形特性的试验研究[J]. 岩土力学, 2005, 26(3): 475-478. (YANG Sheng-qi, SU Cheng-dong, XU Wei-ya. Experimental investigation on strength and deformation properties of marble under conventional triaxial compression[J]. Rock and Soil Mechanics, 2005, 26(3): 475-478. (in Chinese))
    [7]
    苏承东, 付义胜. 红砂岩三轴压缩变形与强度特征的试验研究[J]. 岩石力学与工程学报, 2014, 33(增刊1): 3164-3169. (SU Cheng-dong, FU Yi-sheng. Experimental study of triaxial compression deformation and strength characteristics of red sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3164-3169. (in Chinese))
    [8]
    FANG Z, HARRISON J P. A mechanical degradation index for rock[J]. Int J Rock Mech Min Sci, 2001, 38: 1193-1199.
    [9]
    FANG Z, HARRISON J P. Application of a local degradation model to the analysis of brittle fracture of laboratory scale rock specimens under triaxial conditions[J]. Int J Rock Mech Min Sci, 2002, 39: 459-476.
    [10]
    YUAN S C, HARRISON J P. An empirical dilatancy index for the dilatant deformation of rock[J]. Int J Rock Mech Min Sci, 2004, 41: 679-686.
    [11]
    YUAN S C, HARRISON J P. Development of a hydro- mechanical local degradation approach and its application to modelling fluid flow during progressive fracturing of heterogeneous rocks[J]. Int J Rock Mech Min Sci, 2005, 42: 961-984.
    [12]
    ZHAO X G, CAI M. A mobilized dilation angle model for rocks[J]. Int J Rock Mech Min Sci, 2010, 47: 368-384.
    [13]
    于永江, 张春会, 王来贵. 基于退化角的岩石峰后应变软化模型[J]. 煤炭学报, 2012, 37(3): 402-406. (YU Yong-jiang, ZHANG Chun-hui, WANG Lai-gui. Post-peak strain softening model of rock based on degradation angle[J]. Journal of China Coal Society, 2012, 37(3): 402-406. (in Chinese))
    [14]
    张春会, 赵全胜, 王来贵, 等. 三轴压缩岩石应变软化及渗透率演化的实验和数值模拟[J]. 煤炭学报, 2015, 40(8): 1774-1782. (ZHANG Chun-hui, ZHAO Quan-sheng, WANG Lai-gui, et al. Investigation of test and numerical modeling for strain softening behavior and permeability evolution of rock under tri-axial compression[J]. Journal of China Coal Society, 2015, 40(8): 1774-1782. (in Chinese))
    [15]
    CAI Y D, LIU D M, JONATHAN P M, et al. Permeability evolution in fractured coal Combining tri-axial confinement with X-ray computed tomography, acoustic emission and ultrasonic techniques[J]. International Journal of Coal Geology, 2014, 122: 91-104.
    [16]
    CHEN Y F, HU S H, WEI K, et al. Experimental characterization and micromechanical modeling of damage-induced permeability variation in Beishan granite[J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 71: 64-76.
    [17]
    WANG S, ELSWORTH D, LIU J. Permeability evolution during progressive deformation of intact coal and implications for instability in underground coal seams[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 58: 34-45.
    [18]
    刘洪磊, 杨天鸿, 于庆磊, 等. 凝灰岩破坏全过程渗流演化规律的实验研究[J]. 东北大学学报(自然科学版), 2009, 30(7): 1030-1033. (LIU Hong-lei, YANG Tian-hong, YU Qing-lei, et al. Experimental study on fluid permeation evolution in whole failure process of tuff[J]. Journal of Northeastern University (Natural Science), 2009, 30(7): 1030-1033. (in Chinese))
    [19]
    薛东杰, 周宏伟, 唐咸力, 等. 采动煤岩体瓦斯渗透率分布规律与演化过程[J]. 煤炭学报, 2013, 38(6): 930-935. (XUE Dong-jie, ZHOU Hong-wei, TANG Xian-li, et al. Evolution of mining-induced enhancement and distribution of gas permeability in coal seam and surrounding rock[J]. Journal of China Coal Society, 2013, 38(6): 930-935. (in Chinese))
    [20]
    谢和平, 高 峰, 周宏伟, 等. 煤与瓦斯共采中煤层增透率理论与模型研究[J]. 煤炭学报, 2013, 38(7): 1101-1108. (XIE He-ping, GAO Feng, ZHOU Hong-wei, et al. On theoretical and modeling approach to mining-enhanced permeability for simultaneous exploitation of coal and gas[J]. Journal of China Coal Society, 2013, 38(7): 1101-1108. (in Chinese))
    [21]
    张春会, 赵莺菲, 王来贵, 等. 采动煤岩渗透率演化模型及数值模拟[J]. 岩土力学, 2015, 36(8): 2409-2418. (ZHANG Chun-hui, ZHAO Ying-fei, WANG Lai-gui, et al. Permeability evolution model of mined coal rock and its numerical simulation[J]. Rock and Soil Mechanics, 2015, 36(8): 2409-2418. (in Chinese))
    [22]
    尤明庆. 岩石试样的杨氏模量与围压的关系[J]. 岩石力学与工程学报, 2003, 22(1): 53-60. (YOU Ming-qing. Effect of confining pressure on the Young’s modulus of rock specimen[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1): 53-60. (in Chinese))
    [23]
    ITASCA. Fast Lagrangian analysis of continua. Version 5.0[M]. Minnesota: ITASCA, 2012.
    [24]
    于永江, 张春会, 赵全胜, 等. 承载围岩渗透率演化模型及数值分析[J]. 煤炭学报, 2014, 39(5): 841-848. (YU Yong-jiang, ZHANG Chun-hui, ZHAO Quan-sheng, et al. Permeability model for loaded rock and numerical analysis[J]. Journal of China Coal Society, 2014, 39(5): 841-848. (in Chinese))
  • Cited by

    Periodical cited type(37)

    1. 张远庆,陈勇,王世梅,王力. 岸坡渗流潜蚀模型试验系统变革研究. 三峡大学学报(自然科学版). 2025(02): 48-54 .
    2. 程瑞林,汪泾周,范钦煜,湛正刚,周伟,马刚. 高心墙堆石坝材料本构模型计算的适用性研究. 中南大学学报(自然科学版). 2024(01): 219-229 .
    3. 张丹,邱子源,金伟,张梓航,罗玉龙. 粗粒土渗透及渗透变形试验缩尺方法研究. 岩土力学. 2024(01): 164-172 .
    4. 崔熙灿,张凌凯,王建祥. 缩尺效应对砂砾石料力学特性及其本构模型的影响. 浙江大学学报(工学版). 2024(06): 1198-1208 .
    5. 邹德高,宁凡伟,刘京茂,崔更尧,孔宪京. 基于超大型三轴仪的堆石料动力特性缩尺效应研究. 水利学报. 2024(05): 528-536 .
    6. 王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 .
    7. 刘赛朝,瞿常杰,石北啸. 堆石料缩尺效应试验及其数值模拟. 江西水利科技. 2024(05): 332-336 .
    8. 邹德高,刘京茂,宁凡伟,孔宪京,崔更尧,金伟,湛正刚. 基于超大型三轴试验和原型监测的堆石料模型参数缩尺效应修正. 岩土工程学报. 2024(12): 2476-2483 . 本站查看
    9. 陈洪春,王珊,段玉昌,王柳江,梁睿斌,徐祥,沈超敏. 基于现场载荷试验的压实土石填筑料变形参数反演. 三峡大学学报(自然科学版). 2023(01): 22-27 .
    10. 蒋明杰,朱俊高,张小勇,梅国雄,赵辰洋. 缩尺效应对粗颗粒土静止侧压力系数影响规律试验. 工程科学与技术. 2023(02): 259-266 .
    11. 蒋明杰,吉恩跃,王天成,栗书亚,朱俊高,梅国雄. 粗粒土抗剪强度的缩尺效应规律试验研究. 岩土工程学报. 2023(04): 855-861 . 本站查看
    12. 孙向军,潘家军,卢一为,左永振,周跃峰,王俊鹏. 级配和密度组合对粗粒土强度特性的影响. 长江科学院院报. 2023(08): 133-138 .
    13. 沈超敏,邓刚,刘斯宏,严俊,毛航宇,王柳江. 基于颗粒堆积算法的堆石料压实密度预测研究. 水利学报. 2023(08): 920-929 .
    14. 潘家军,孙向军. 粗颗粒土缩尺方法及缩尺效应研究进展. 长江科学院院报. 2023(11): 1-8 .
    15. 吴鑫磊,石北啸,刘赛朝,徐卫卫,常伟坤. 考虑颗粒破碎的堆石料大型三轴试验. 科学技术与工程. 2022(02): 749-756 .
    16. 徐琨,杨启贵,周伟,马刚,黄泉水. 基于可破碎离散元法的堆石料应力变形及剪胀特性缩尺效应研究. 中国农村水利水电. 2022(03): 200-206+211 .
    17. 吴平,万燎榕,夏万求,高从容. 考虑级配影响的粗粒料三轴剪切破碎特性分析. 水电能源科学. 2022(05): 156-159+155 .
    18. 孟敏强,肖杨,孙增春,张志超,蒋翔,刘汉龙,何想,吴焕然,史金权. 粗粒料及粒间微生物胶结的破碎-强度-能量耗散研究进展. 中国科学:技术科学. 2022(07): 999-1021 .
    19. 邹德高,刘京茂,孔宪京,陈楷,屈永倩,宁凡伟,龚瑾. 强震作用下特高土石坝多耦合体系损伤演化机理及安全评价准则. 岩土工程学报. 2022(07): 1329-1340 . 本站查看
    20. 徐靖,叶华洋,朱晟. 粗粒料颗粒破碎三维离散元模型及其在密度桶试验中的应用. 河海大学学报(自然科学版). 2022(04): 127-134 .
    21. 汤洪洁,杨正权,赵宇飞,田忠勇. 阿尔塔什高面板坝变形控制与安全保障关键技术研究. 水利规划与设计. 2022(12): 26-32 .
    22. 宁凡伟,孔宪京,邹德高,刘京茂,余翔,周晨光. 筑坝材料缩尺效应及其对阿尔塔什面板坝变形及应力计算的影响. 岩土工程学报. 2021(02): 263-270 . 本站查看
    23. 刘赛朝,吴鑫磊,徐卫卫,石北啸. 堆石料缩尺效应试验研究. 人民长江. 2021(01): 173-176+217 .
    24. 姜景山,左永振,程展林,韦有信,张超,夏威夷. 考虑密度影响的粗粒料剪胀模型. 人民长江. 2021(04): 182-186 .
    25. 潘生贵,陈少峰,杨辉,郑有强,李传懿. 海岸带强风化花岗岩强度及应力应变特性的尺寸效应研究. 工程勘察. 2021(05): 6-10 .
    26. 毛航宇,刘斯宏,沈超敏,王柳江,初文婷. 温、湿控制粗粒料大型三轴仪的研制及应用. 岩石力学与工程学报. 2021(06): 1258-1266 .
    27. 周泳峰,王俊杰,王爱国,杨希. 缩尺效应对堆石料颗粒破碎特性的影响. 水电能源科学. 2021(08): 165-168+65 .
    28. 王家全,畅振超,王晴,唐毅. 不同动应力比下加筋前后砾性土的动三轴试验分析. 水力发电. 2020(04): 120-125 .
    29. 李传懿,陈志波. 海底强风化花岗岩K_0固结三轴试验尺寸效应. 中南大学学报(自然科学版). 2020(06): 1646-1653 .
    30. 邵晓泉,迟世春. 堆石料变形参数的粒径尺寸相关性研究. 岩土工程学报. 2020(09): 1715-1722 . 本站查看
    31. 李学丰,李瑞杰,张军辉,王奇. 堆石料三维强度特性. 中国公路学报. 2020(09): 54-62 .
    32. 吴鑫磊,徐卫卫,刘赛朝,常伟坤,石北啸. 粗粒料缩尺效应的试验研究进展. 水利科学与寒区工程. 2020(03): 1-7 .
    33. 王晋伟,迟世春,邵晓泉,赵飞翔. 正交–等值线法在堆石料细观参数标定中的应用. 岩土工程学报. 2020(10): 1867-1875 . 本站查看
    34. 陈之祥,邵龙潭,李顺群,郭晓霞,田筱剑. 三维真土压力盒的设计与应力参数的计算. 岩土工程学报. 2020(11): 2138-2145 . 本站查看
    35. 郭万里,朱俊高,王俊杰,鲁洋. 粗粒土静力特性及室内测试技术研究进展. 岩石力学与工程学报. 2020(S2): 3570-3585 .
    36. 武利强,叶飞,林万青. 堆石料力学特性缩尺效应试验研究. 岩土工程学报. 2020(S2): 141-145 . 本站查看
    37. 任秋兵,李明超,杜胜利,刘承照. 筑坝堆石料抗剪强度间接测定模型与实用计算公式研究. 水利学报. 2019(10): 1200-1213 .

    Other cited types(25)

Catalog

    Article views (566) PDF downloads (372) Cited by(62)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return