• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Yi, ZHOU Xiao-ping, QIAN Qi-hu. Elastoplastic analysis of surrounding rock masses around tunnels using general particle dynamics method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1104-1116. DOI: 10.11779/CJGE201606018
Citation: ZHAO Yi, ZHOU Xiao-ping, QIAN Qi-hu. Elastoplastic analysis of surrounding rock masses around tunnels using general particle dynamics method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1104-1116. DOI: 10.11779/CJGE201606018

Elastoplastic analysis of surrounding rock masses around tunnels using general particle dynamics method

More Information
  • Received Date: February 25, 2015
  • Published Date: June 24, 2016
  • The novel meshless numerical method, which is known as general particle dynamics (GPD) method, is proposed. The non-associated flow law and the associated flow law can be employed to analyze the plastic deformation of the surrounding rock masses around tunnels using the GPD method. The stability of the surrounding rock masses around tunnels are also determined using the GPD method as well as the stress fields, displacement fields and plastic zone. The numerical results by the proposed method are in good agreement with the FEM results. It is proved that the GPD method is efficient to predict the elastic-plastic properties of the surrounding rock masses around tunnels.
  • [1]
    潘 岳, 王志强. 基于应变非线性软化的圆形硐室围岩弹塑性分析[J]. 岩石力学与工程学报, 2005, 24(6): 915-920. (PAN Yue, WANG Zhi-qiang. Elastoplastic analysis of surrounding rock of circular chamber based on strain nonlinear softening[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(6): 915-920. (in Chinese))
    [2]
    CARRANZA-TORRES C, FAIRHURST C. The elastoplastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(6): 777-809.
    [3]
    WANG Y. Ground response of circular tunnel in poorly consolidated rock[J]. Journal of Geotechnical Engineering, 1996, 122(9): 703-708.
    [4]
    PARK K H, KIM Y J. Analytical solution for a circular opening in an elastic-brittle-plastic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(4): 616-622.
    [5]
    SHARAN S K. Elastic-brittle-plastic analysis of circular openings in Hoek-Brown media[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(6): 817-824.
    [6]
    SHARAN S K. Analytical solutions for stresses and displacements around a circular opening in a generalized Hoek-Brown rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 40(1): 78-85.
    [7]
    蒋斌松, 张 强, 贺永年, 等. 深部圆形巷道破裂围岩的弹塑性分析[J]. 岩石力学与工程学报, 2007, 26(5): 982-986. (JIANG Bin-song, ZHANG Qiang, HE Yong-nian, et al. Elastoplastic analysis of cracked surrounding rocks in deep circular openings[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 982-986. (in Chinese))
    [8]
    BROWN E T, BRAY J W, LADANYI B, et al. Ground response curves for rock tunnels[J]. Journal of Geotechnical Engineering, 1983, 109(1): 15-39.
    [9]
    WANG S L, YIN X T, TANG H, et al. A new approach for analyzing circular tunnel in strain-softening rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(1): 170-178.
    [10]
    LEE Y K, PIETRUSZCZAK S. A new numerical procedure for elastoplastic analysis of a circular opening excavated in a strain-softening rock mass[J]. Tunnelling and Underground Space Technology, 2008, 23(5): 588-599.
    [11]
    PARK K H, TONTAVANICH B, LEE J G. A simple procedure for ground response curve of circular tunnel in elastic-strain softening rock masses[J]. Tunnelling and Underground Space Technology, 2008, 23(2): 151-159.
    [12]
    PREVOST J H, HUGHES T J R. Finite element solution of elastic-plastic boundary value problems[J]. Journal of Appied Mechanics, 1984, 48: 69-74.
    [13]
    ZHOU X P, BI J, QIAN Q H. Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1097-1114.
    [14]
    ZHOU X P, ZHAO Y, QIAN Q H. A novel meshless numerical method for modeling progressive failure processes of slopes[J]. Engineering Geology, 2015, 192(18): 139-153.
    [15]
    GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory an application to non-spherical stars[J]. Mon Not R Astron Soc, 1977, 181: 375-389.
    [16]
    MONAGHAN J J, LATTANZIO J C. A refined particle method for astrophysical problems[J]. Astron Astrophys, 1985, 149(1): 135-143.
    [17]
    LIBERSKY L D, PETSCHEK A G, CARNEY T C, et al. High strain Lagrangian hydrodynamics a three-dimensional SPH code for dynamic material response[J]. J Comput Phys, 1993, 109(1): 67-75.
    [18]
    LIBERSKY L D, PETSCHEK A G. Smoothed particle hydrodynamics with strength of materials[J]. Advances in the Free Lagrange Method Lecture Notes in Physics, 1990, 395: 248-257.
    [19]
    MONAGHAN J J. Simulating free surface flows with SPH[J]. J Comput Phys, 1994, 110(2): 399-406.
    [20]
    YU M H, LI J C. Computatioal plastictiy: with emphasis on the application of the unified strength theory and associated flow rule[M]. Berlia: Springer, 2012.
    [21]
    VERMEER P A, DE B R. Non-associated plasticity for soils, concrete and rock[J]. Heron, 1984, 29(3): 1-65.
    [22]
    范 文, 俞茂宏, 陈立伟. 考虑材料剪胀及软化的有压隧洞弹塑性分析的解析解[J]. 工程力学, 2004, 21(5): 16-24. (FAN Wen, YU Mao-hong, CHEN Li-wei. An analytic solution of elastoplastic pressure tunnel considering material softening and dilatancy[J]. Engineering Mechanics, 2004, 21(5): 16-24. (in Chinese))
    [23]
    邓楚键, 郑颖人, 王 凯, 等. 有关岩土材料剪胀的讨论[J]. 岩土工程学报, 2009, 31(7): 1110-1114. (DENG Chu-jian, ZHENG Ying-ren, WANG Kai, et al. Some discussion on the dilatancy of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1110-1114. (in Chinese))
    [24]
    张培文, 陈祖煜. 剪胀角对求解边坡稳定的安全系数的影响[J]. 岩土力学, 2004, 25(11): 1757-1760. (ZHANG Pei-wen, CHEN Zu-yu. Finite element method for solving safety factor of slope stability[J]. Rock and Soil Mechanics, 2004, 25(11): 1757-1760. (in Chinese))
    [25]
    MONAGHAN J J. On the problem of penetration in particle methods[J]. Journal of Computational Physics, 1989, 82: 1-15.
  • Cited by

    Periodical cited type(19)

    1. 杨晓亚,于坤霞,李占斌,李鹏,刘永刚,莫淑红,杨建宏. 秦岭山区-黄土高原地区生态基流区域差异及其阈值研究. 干旱区地理. 2025(03): 380-390 .
    2. 唐逸凡,焦艳梅,刘新原,齐大洪,宋林辉. 地下水位升降过程中的黏土地基孔压变化试验研究. 南京工业大学学报(自然科学版). 2024(01): 103-111 .
    3. 李杰,程龙飞,孙大典,任怡桦,李雙衡. 酸性循环侵蚀下灰岩-土体渗透特性研究. 人民长江. 2024(07): 212-220 .
    4. 郭海,张安银. 基于PCA的长江漫滩软弱黏性土渗透特性研究. 江苏建筑. 2024(04): 102-105 .
    5. 李永威,徐林荣,傅金阳,商拥辉. 列车荷载作用下铁路路基填料渗透破坏机制. 岩土力学. 2024(S1): 299-308 .
    6. 李万双,蔡俊兵,柳雪钊. 软土渗透特性实验研究. 房地产世界. 2023(05): 39-43 .
    7. 邱潇,蒲勇,张亮,李明强. 大渡河中游流域深厚砾石层沉积特征与渗透特性. 人民长江. 2023(05): 156-162 .
    8. 张亮亮,邓刚,陈锐,张茵琪,罗之源. 不连续级配无黏性土渗蚀演变特征研究. 岩土工程学报. 2023(07): 1412-1420 . 本站查看
    9. 康永闯,朱兴华,刘邦晓,孔静雯,王梦奎. 级配特征和水力梯度对堰塞坝材料渗透特性的影响研究. 西北水电. 2023(04): 30-37 .
    10. 郑刚,王佳琳,佟婧博,张天奇. 天津承压含水层粉土渗透特性试验研究. 天津大学学报(自然科学与工程技术版). 2022(01): 77-84 .
    11. 宋林辉,王兴亚,吴昊宇,周克发,梅国雄. 黏土在不同应力条件下的渗透过程分析. 岩土工程学报. 2022(04): 755-761 . 本站查看
    12. 刘斯宏,鲁洋,张勇敢,张呈斌,程德虎. 袋装膨胀土组合体渗透特性大型模型试验. 河海大学学报(自然科学版). 2022(06): 101-107 .
    13. 张乐,党发宁,高俊,丁九龙. 线性加载条件下考虑应力历史的饱和黏土一维非线性固结渗透试验研究. 岩土力学. 2021(04): 1078-1087 .
    14. 王力,王世梅,王琳,李高. 水库型滑坡流固耦合研究现状及展望. 水电能源科学. 2020(01): 143-146+31 .
    15. 梅世昂,钟启明,陈澄昊,阎志坤. 级配特征和水力梯度对砂砾料渗透性影响研究. 人民黄河. 2020(06): 130-134+139 .
    16. 刘翠. 研究室内渗透试验结果的影响因素及注意事项. 四川水泥. 2020(05): 310 .
    17. 侯孝东,涂国祥,邱潇,李明,王清,钱昭宇. 汉源九襄地区深厚砾石层渗透特性研究. 水利与建筑工程学报. 2020(04): 192-197 .
    18. 杨德欢,韦昌富,颜荣涛,汤沁,刘莉. 细粒迁移及组构变化对黏土渗透性影响的试验研究. 岩土工程学报. 2019(11): 2009-2017 . 本站查看
    19. 黄薛,曾纯品,雷炳霄,丁庆忠. 济南富水孔隙黏性土地层渗透性试验研究. 地质学报. 2019(S1): 87-92 .

    Other cited types(21)

Catalog

    Article views (544) PDF downloads (463) Cited by(40)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return