Citation: | GAN Ya-xiong, ZHU Wei, LÜ Yi-yan, YANG Qin. Early-strength mechanism of cementitious additives from perspective of water conversion[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 755-760. DOI: 10.11779/CJGE201604022 |
[1] |
朱 伟, 张春雷, 刘汉龙, 等. 疏浚泥处理再生资源技术的现状[J]. 环境科学与技术, 2002, 25(4): 39-41. (ZHU Wei, ZHANG Chun-lei, LIU Han-long, et al. The status quo of dredged spoils utilization[J]. Environmental Science and Technology, 2002, 25(4): 39-41. (in Chinese))
|
[2] |
张和庆, 谢 健, 朱 伟, 等. 疏浚物倾倒现状与转化为再生资源的研究——中国海洋倾废面临的困难和对策[J]. 海洋通报, 2004, 23(6): 54-60. (ZHANG He-qing, XIE Jian, ZHU Wei, et al. Present situation of dredged materials dumping and the study of transforming dredged mud into regenerative resources——difficulties of refuses dumping in China seas and countermeasures to deal with these problems[J]. Marine Science Bulletin, 2004, 23(6): 54-60. (in Chinese))
|
[3] |
汤怡新, 刘汉龙, 朱 伟. 水泥固化土工程特性试验研究[J]. 岩土工程学报, 2000, 22(5): 549-554. (TANG Yi-xin, LIU Han-long, ZHU Wei. Study on engineering properties of cement-stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 549-554. (in Chinese))
|
[4] |
张铁军, 洪振舜, 邓东升, 等. 水泥固化粉质土的无侧限抗压强度预测[J]. 东南大学学报 (自然科学版), 2008, 38(5): 839-843. (ZHANG Tie-jun, HONG Zhen-shun, DENG Dong-sheng, et al. Predication method of unconfined compression strength for cemented silty soils[J]. Journal of Southeast University (Natural Science Edition), 2008, 38(5): 839-843. (in Chinese))
|
[5] |
曹玉鹏, 卞 夏, 邓永锋. 高含水率疏浚淤泥新型复合固化材料试验研究[J]. 岩土力学, 2011(增刊1): 321-326. (CAO Yu-peng, BIAN Xia, DENG Yong-feng. Solidification of dredged sludge with high water content by new composite additive[J]. Rock and Soil Mechanics, 2011, 32(S1): 321-326. (in Chinese))
|
[6] |
朱 伟, 张春雷, 范昭平, 等. 复合型淤泥固化材料[P]. CN03113373.8. 2003-10-15. (ZHU Wei, ZHANG Chun-lei, FAN Zhao-ping, et al. A new complsite materials for dredged solidification[P]. CN03113373.8. 2003-10-15. (in Chinese))
|
[7] |
孙晓辉. 固化污泥早期强度发展机理及早强固化材料研究[D]. 南京: 河海大学, 2012. (SUN Xiao-hui. Study on mechanism of early-strength of solidified sludge and binders with high early-strength for sludge treatment[D]. Nanjing: Hohai University, 2012. (in Chinese))
|
[8] |
SUN X H, ZHU W, QIAN X D, et al. Exploring cementitious additives for pretreatment of high-early- strength sewage sludge from the perspective of the rapid generation of nonevaporable water[J]. Journal of Materials in Civil Engineering. 2013, 26(5): 878-885.
|
[9] |
ZHU W, ZHANG C L, CHIU A C. Soil-water transfer mechanism for solidified dredged materials[J]. Journal of Geotechnical and Geo-environmental Engineering, 2007, 133(5): 588-598.
|
[10] |
张春雷. 基于水分转化模型的淤泥固化机理研究[D]. 南京: 河海大学, 2007. (ZHANG Chun-lei. Study of dredged sediments solidification mechanism based on water tranfer model[D]. Nanjing: Hohai University, 2007. (in Chinese))
|
[11] |
黄 新, 许 晟, 宁建国. 含铝固化剂固化软土的试验研究[J]. 岩石力学与工程学报, 2007(1): 156-161. (HUANG Xin, XU Sheng, NING Jian-guo. Experimental research on stabilized soft soils by alumina bearing modifier[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(1): 156-161. (in Chinese))
|
[12] |
彭小芹, 杨 巧, 黄 滔, 等. 水化硅酸钙超细粉体微观结构分析[J]. 沈阳建筑大学学报 (自然科学版), 2008, 24(5): 823-827. (PENG Xiao-qin, YANG Qiao, HUANG Tao, et al. Analysis on the microstructure of hydrated calcium silicate superfine powder[J]. Journal of Shenyang Jianzhu University (Natural Science), 2008, 24(5): 823-827. (in Chinese))
|
[13] |
HUANG Y H, ZHU W, QIAN X D, et al. Change of mechanical behavior between solidified and remolded solidified dredged materials[J]. Engineering Geology. 2011, 119(3): 112-119.
|
1. |
张伟丽,李明依,李俊,钱程,陈宗武. 基于MICP技术的固化黏土抗侵蚀性能研究. 安全与环境工程. 2025(01): 201-210+232 .
![]() | |
2. |
高瑜,邢家伟,王晓荣,韩红伟,樊促遥. 核磁共振作用下微生物矿化风沙土材料的微观孔隙. 科学技术与工程. 2025(05): 2066-2073 .
![]() | |
3. |
王东星,许凤丽,泮晓华,商武锋,吴章平,郭克诚. GGBS-MICP协同固化淤泥质砂土工程特性研究. 岩石力学与工程学报. 2025(05): 1349-1362 .
![]() | |
4. |
朱文羲,邓华锋,李建林,肖瑶,熊雨,程雷. 木质素磺酸钙增强花岗岩残积土微生物固化效果研究. 土木工程学报. 2024(03): 123-132 .
![]() | |
5. |
徐志平,贾卓龙,晏长根,王逸凡. 聚丙烯纤维加筋黄土边坡防护原位测试及改进策略. 人民黄河. 2024(04): 111-116 .
![]() | |
6. |
耿会岭,赵卫全,赵永刚,杨晓东,于凡. 生物诱导碳酸钙沉淀在改善土壤侵蚀中的应用. 水利水电技术(中英文). 2024(03): 11-23 .
![]() | |
7. |
蒋钊,彭劼,许鹏旭,卫仁杰,李亮亮. 微生物结合碳纤维加固钙质砂的高强度试验研究. 土木与环境工程学报(中英文). 2024(05): 64-73 .
![]() | |
8. |
付贵永,肖杨,史金权,周航,刘汉龙. 干湿循环下EICP联合黄原胶加固钙质粉土劣化特性试验研究. 岩土工程学报. 2024(11): 2341-2351 .
![]() | |
9. |
郑宏扬,王瑞,刘宇佳,唐朝生. 基于生物碳化活性氧化镁技术抑制土体干缩开裂的试验研究. 高校地质学报. 2024(06): 705-713 .
![]() | |
10. |
袁童,雷学文,艾东,安然,陈昶,陈欣. 椰壳纤维-MICP复合改良膨胀土强度特性. 水利与建筑工程学报. 2023(03): 105-111 .
![]() | |
11. |
赵卫全,张银峰,李娜,耿会岭,严俊. 微生物改良膨胀土的胀缩性及耐水性试验研究. 中国水利水电科学研究院学报(中英文). 2023(04): 350-359 .
![]() | |
12. |
杜掀,郑涛,卢超波,杨庭伟,姜洪亮. 不同类型纤维对MICP处理钙质砂物理力学性能的影响. 西部交通科技. 2023(01): 60-63 .
![]() | |
13. |
胡其志,霍伟严,马强,陶高梁. MICP联合纤维加筋黄土的力学性能及水稳性研究. 人民长江. 2023(08): 227-232+248 .
![]() | |
14. |
张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 .
![]() | |
15. |
张建伟,赵聪聪,尹悦,石磊,边汉亮,韩智光. 紫外诱变产脲酶菌株加固粉土的试验研究. 岩土工程学报. 2023(12): 2500-2509 .
![]() | |
16. |
陈欣,安然,汪亦显,陈昶. 胶结液浓度对MICP固化残积土力学性能影响及机理研究. 水利与建筑工程学报. 2023(06): 100-106+149 .
![]() | |
17. |
贺桂成,唐孟媛,李咏梅,李春光,张志军,伍玲玲. 改性黄麻纤维联合微生物胶结铀尾砂的抗渗性能试验研究. 岩土力学. 2023(12): 3459-3470 .
![]() | |
18. |
黄安国,何稼,邵应峰. EICP联合纤维加固边坡表层抗侵蚀试验研究. 河南科学. 2022(09): 1411-1421 .
![]() | |
19. |
申春妮,方祥位,胡丰慧,姚志华,李洋洋. 珊瑚砂地基中微生物珊瑚砂桩承载特性试验研究. 岩土工程学报. 2022(S1): 68-73 .
![]() |