• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Wen-jie, GENG Xiao. Performance and mechanism of capillary-barrier evaportranspiration cover of landfills[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 454-459. DOI: 10.11779/CJGE201603008
Citation: ZHANG Wen-jie, GENG Xiao. Performance and mechanism of capillary-barrier evaportranspiration cover of landfills[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 454-459. DOI: 10.11779/CJGE201603008

Performance and mechanism of capillary-barrier evaportranspiration cover of landfills

More Information
  • Received Date: January 16, 2015
  • Published Date: March 24, 2016
  • Capillary barriers generally are considered for use in arid and semi-arid areas such that there have been few researches on capillary barrier covers in humid regions. A soil column was constructed in the open air to evaluate the performance of a capillary-barrier evaportranspiration cover. Percolation, surface runoff and water content variation under precipitation, evaporation and evapotranspiration were monitored for 18 months. A water balance model (HELP) and a soil-vegetation-atmosphere interaction model (VADOSE/W) were used to simulate the test. The total precipitation during the testing period is 2361 mm. There are 88.4 mm surface runoff and 67.4 mm percolation. Most precipitation is sent back to the atmosphere by the repeated water store-release process. The capillary barrier cover is effective because the hot season mostly coincides with the rainy season at the test site. A large amount of water is stored by the overlying clay layer during precipitation events due to the capillary break effect. Failure of the capillary break occurs only when the critical volumetric water content of the overlying finer textured clay layer is exceeded. The breakthrough is caused by consecutive intense rainfall events. Both HELP and VADOSE/W overestimate the surface runoff and percolation, and underestimate the evapotranspiration. The predictions given by VADOSE/W are more accurate than those given by HELP, because the behavior of unsaturated flows can be considered in VADOSE/W.
  • [1]
    STAMATOPOULOS A C, KOTZIAS P C. Earth slide on Geomembrane[J]. Journal of Geotechnical Engineering, 1996, 122(5): 408-411.
    [2]
    DWYER S F. Alternative landfill covers pass the test[J]. Civil Engineering, ASCE, 1998, 12(1): 50-52.
    [3]
    SCHNABEL W, LEE W, BARNES D L. A numerical simulation of evapotranspiration landfill cover performance at three cold-region locations[C]// Impacts of Global Climate Change, 2005: 1-8.
    [4]
    ROESLER A C, BENSON C H, ALBRIGHT W H. Field hydrology and model predictions for final covers in the alternative assessment program-2002[R]. Madison: University of Wisconsin, 2002.
    [5]
    赵 慧, 刘川顺, 王 伟, 等. 垃圾填埋场腾发覆盖系统控制渗滤效果的研究[J]. 中国给水排水, 2008, 24(9): 86-89. (ZHAO Hui, LIU Chuan-shun, WANG Wei, et al. Study of leachate control effect of evapotranspiration landfill cover system[J]. China Water & Wastewater, 2008, 24(9): 86-89. (in Chinese))
    [6]
    邓林恒, 詹良通, 陈云敏, 等. 含非饱和导排层的毛细阻滞型覆盖层性能模型试验研究[J]. 岩土工程学报, 2012, 34(1): 75-80. (DENG Lin-heng, ZHAN Liang-tong, CHEN Yun-min, et al. Model tests on capillary-barrier cover with unsaturated drainage layer[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 75-80. (in Chinese))
    [7]
    NG C W W, WOONA K X, LEUNGA A K, et al. Experimental investigation of induced suction distribution in a grasscovered soil[J]. Ecological Engineering, 2013, 52: 219-223.
    [8]
    SHACKELFORD C D, CHANG C K, CHIU T F. The capillary barrier effect in unsaturated flow through soil barriers[C]// Proc 1st Int Conf on Environmental Geotechnics. Canada, Balkema, Edmonton, 1994: 789-793.
    [9]
    DWYER S F. Water balance measurements and computer simulations of landfill covers[D]. New Mexico: University of New Mexico, 2003.
    [10]
    OGORZALEK A S, BOHNHOFF G L, SHACKELFORD C D, et al. Comparison of field data and water-balance predictions for a capillary barrier cover[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2008, 134(4): 470-486.
    [11]
    ZORNBERG J G, LAFOUNTAIN L, CALDWELL J A. Analysis and design of evapotranspirative cover for hazardous waste landfill[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(5): 427-438.
    [12]
    KAVAZANJIAN E J, BETH A G, TARIK H H. Unsaturated flow flux assessment for evapotranspiration cover compliance[C]// The 4th International Conference on Unsaturated Soils. ASCE, Arizona: 2006: 634-645.
    [13]
    张文杰, 邱战洪, 朱成仁, 等. 长三角地区填埋场ET封顶系统的性能评价[J]. 岩土工程学报, 2009, 31(3): 384-389. (ZHANG Wen-jie, QIU Zhan-hong, ZHU Cheng-ren, et al. Evaluation of evapotranspiration covers of landfills in Yangtze river delta region[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 384-389. (in Chinese))
    [14]
    邱清文, 张文杰, 程泽海. 湿润地区垃圾填埋场蒸发蒸腾覆盖层参数分析[J]. 岩土力学, 2012, 33(增刊1): 283-289. (QIU Qing-wen, ZHANG Wen-jie, CHENG Ze-hai. Parametric analyses of evapotranspiration landfill covers in humid areas[J]. Rock and Soil Mechanics, 2012, 33(S1): 283-289. (in Chinese))
  • Cited by

    Periodical cited type(8)

    1. 杨旭辉,柏谦,贾鹏蛟. 地铁车站小直径管幕-横梁支护参数优化分析. 沈阳工业大学学报. 2025(01): 114-123 .
    2. 邱建,赵文,路博,孙旭. 新型管幕工法修建地铁车站地层变形特性及参数优化. 东北大学学报(自然科学版). 2024(11): 1645-1655 .
    3. 崔光耀,宋博涵,何继华,田宇航. 超近接上跨既有隧道施工影响分区及加固措施效果. 长江科学院院报. 2023(06): 114-118+125 .
    4. 伍凯,毕延哲,杨鑫,储修琼. 超浅覆土小净距上跨运营线路盾构掘进超前管幕支护模拟分析. 路基工程. 2023(04): 130-136 .
    5. 陈凯. 基于变形控制的密排管幕顶管施工顺序优化分析. 铁道勘察. 2023(05): 149-157 .
    6. 王子君,赵文,程诚,柏谦. 地铁车站小直径管幕工法开挖变形规律. 东北大学学报(自然科学版). 2022(11): 1630-1637 .
    7. 袁庆利. 大直径密排管幕的力学分析及在地铁车站中的应用. 吉林水利. 2021(06): 1-10 .
    8. 张贺. 新型钢管幕力学变形特征及其在地铁车站中的应用. 工程建设. 2021(09): 1-6 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return